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Introduction Motivation

Quantitative vs. Qualitative

Spatio-temporal configurations
can be described quantitatively by
specifying the coordinates of the
relevant objects:

Example: At time point 10.0 object A
is at position (11.0,1.0,23.7), at time

point 11.0 at position

(15.2,3.5,23.7). From time point 0.0

to 11.0, object B is at position

(15.2,3.5,23.7). Object C is at time

point 11.0 at position

(300.9,25.6,200.0) and at time point

35.0 at (11.0,1.0,23.7).

Often, however, a qualitative
description (using a finite
vocabulary) is more adequate:

Example: Object A hit object B.

Afterwards, object C arrived.

Sometimes we want to reason
with such descriptions, e.g.:

Object C was not close to object A
when it hit object B.
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Introduction Motivation

Representation of Qualitative Knowledge

Intention: Description of configurations using a finite vocabulary and reasoning
about these descriptions

◮ Specification of a vocabulary: usually a finite set of relations (often
binary) that are pairwise disjoint and exhaustive

◮ Specification of a language: often sets of atomic formulae (constraint
networks), perhaps restricted disjunction

◮ Specification of a formal semantics

◮ Analysis of computational properties and design of reasoning methods
(often constraint propagation)

◮ Perhaps, specification of operational semantics for verifying whether a
relation holds in a given quantitative configuration
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Introduction Motivation

Applications in . . .

◮ Natural language processing

◮ Specification of abstract spatio-temporal configurations

◮ Query languages for spatio-temporal information systems

◮ Layout descriptions of documents (and learning of such layouts)

◮ Action planning

◮ . . .
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Introduction Motivation

Qualitative Temporal Relations: Point Calculus

We want to talk about time instants (points) and binary relations over them.

◮ Vocabulary:
◮ X equals Y : X = Y
◮ X before Y : X < Y
◮ X after Y : X > Y

◮ Language:
◮ Allow for disjunctions of basic relations to express indefinite information.

Use set of relations to express that. For instance, {<,=} expresses ≤.
◮ 23 different relations (including the impossible and the universal relation)
◮ Use sets of atomic formulae with these relations to describe configurations.

For example:
{

x{=}y,y{<,>}z
}

◮ Semantics: Interpret the time point symbols and relation symbols over the
rational (or real) numbers.
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Introduction Motivation

Some Reasoning Problems

{

x{<,=}y,y{<,=}z,v{<,=}y,w{>}y,z{<,=}x
}

◮ Satisfiability: Are there values for all time points such that all formulae are
satisfied?

◮ Satisfiability with v{=}w?

◮ Finding a satisfying instantiation of all time points

◮ Deduction: Does x{=}y logically follow?
Does v{<,=}w follow?

◮ Finding a minimal description: What are the most constrained relations
that describe the same set of instantiations?
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Introduction CSP

From a Logical Point of View . . .

In general, qualitatively described configurations are simple logical theories:

◮ Only sets of atomic formulae to describe the configuration

◮ Only existentially quantified variables (or constants)

◮ A fixed background theory that describes the semantics of the relations
(e.g., dense linear orders)

◮ We are interested in satisfiability, model finding, and deduction

◮ Constraint Satisfaction Problems
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Introduction CSP

CSP – Definition

Definition
A constraint satisfaction problem (CSP) is given by

◮ a set V of n variables {v1, . . . ,vn},

◮ for each vi, a value domain Di

◮ constraints (relations over subsets of the variables)

Tasks:
Find one (or all) solution(s), i. e., tuples

(d1, . . . ,dn) ∈ D1 × . . .×Dn

such that the assignment vi 7→ di (1 ≤ i ≤ n) satisfies all constraints.
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Introduction CSP

CSP – Example

k-colorability: Can we color the nodes of a graph with k colors in a way such
that all nodes connected by an edge have different colors?

◮ The node set is the set of variables

◮ The domain of each variable is {1, . . . ,k}

◮ The constraints are that nodes connected by an edge must have a
different value

Note: This CSP has a particular restricted form:

◮ Only binary constraints

◮ The domains are finite

Other examples: Many problems (e.g. cross-word puzzle, n-queens problem,
configuration, . . . ) can be cast as a CSP (and solved this way)
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Introduction CSP

Our Example: Point relations

◮ Our point relation CSP is a binary CSP with infinite domains.

◮ It can be represented as a constraint graph:

< = >

wv

y

< =< =

< =
zx
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Introduction CSP

Computational Complexity

Theorem
It is NP-hard to decide solvability of CSPs, even binary CSPs.

Proof.
Since k-colorability is NP-complete (even for fixed k ≥ 3), solvability of CSPs in
general must be NP-hard.

Question: Is CSP solvability in NP?
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Introduction Solving CSP

Solving CSP

◮ Enumeration of all assignments and testing

Ã . . . too costly

◮ Backtracking search

Ã 1001 different strategies, often “dead” search paths are explored
extensively

◮ Constraint propagation: elimination of obviously impossible values
followed by backtracking search

◮ Many other search methods, e.g., local search, stochastic search, etc.

Ã How do we solve CSP with infinite domains?
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Introduction Solving CSP

General Assumptions

◮ Only at most binary constraints (i.e., we can use constraint graph)

◮ Uniform domain D for all variables

◮ Unary constraints Di and binary constraints Ri j are sets of values or sets
of pairs of values, resp.

◮ We assume that for all nodes i, j:

(x,y) ∈ Ri j ⇒ (y,x) ∈ R ji
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Introduction Solving CSP

Local Consistency

◮ A CSP is locally consistent if for particular subsets of the variables,
solutions of the restricted CSP can be extended to solutions of a larger
set of variables.

Ã Methods to transform a CSP into a tighter, but “equivalent” problem.

Definition
A binary CSP 〈V,D,C〉 is arc consistent (or 2-consistent) if for all nodes
1 ≤ i, j ≤ n,

x ∈ Di ⇒∃y ∈ D j s. t. (x,y) ∈ Ri j

Ã When a CSP is arc consistent, each one variable assignment {vi}→ D that
satisfies all (unary) constraints in vi, i. e., Di, can be extended to a two variable
assignment {vi,v j}→ D that satisfies all unary/binary constraints in these
variables, i. e., Di, D j, and Ri j.
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Introduction Solving CSP

Arc Consistency

EnforceArcConsistency (C ):
Input: a (binary) CSP C = 〈V,D,C〉
Output: an equivalent, but arc consistent CSP C ′

repeat
for each arc (vi,v j) with Ri j ∈C

Di := Di ∩
{

x ∈ D : ex. y ∈ D j s. t. (x,y) ∈ Ri j
}

endfor
until no domain is changed

◮ Terminates in time O(n3 · k3) if we have finite domains (where k is the
number of values)

Ã There exist different (more efficient) algorithms for enforcing arc
consistency.
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Introduction Solving CSP

Arc Consistency

Lemma

◮ Enforcing arc consistency yields an arc consistent CSP.

◮ Enforcing arc consistency is solution invariant, i. e. it does not change the
set of solutions.

Ã Arc consistent CSPs need not be consistent, and vice versa.
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Introduction Solving CSP

Arc Consistency – Example

D1 = {1,2,3}

D2 = {2,3}

D3 = {2}

Ri j = ′′ 6=′′ for i 6= j

1. D1 := D1 ∩{x : y ∈ D3 ∧ (x,y) ∈ R13} = {1,3}
2. D2 := D2 ∩{x : y ∈ D3 ∧ (x,y) ∈ R23} = {3}
3. D1 := D1 ∩{x : y ∈ D2 ∧ (x,y) ∈ R12} = {1}
4. CSP is now arc consistent

◮ Since all unary constraints are singletons, this defines a solution of the
CSP.

◮ Since enforcing arc consistency does not change the set of solutions, this
is a unique solution of the original CSP.
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Introduction Solving CSP

Local Consistency (2): Path Consistency

Definition
A binary CSP 〈V,D,C〉 is said to be path consistent (or 3-consistent) if for all
nodes 1 ≤ i, j,k ≤ n,

x ∈ Di,y ∈ D j,(x,y) ∈ Ri j ⇒

∃z ∈ Dk s. t. (x,z) ∈ Rik and (y,z) ∈ R jk

Ã When a CSP is path consistent, each two variable assignment {vi,v j}→ D
satisfying all constraints in vi and v j can be extended to any three variable
assignment {vi,v j,vk}→ D such that all constraints in these variables are
satisfied.
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Introduction Solving CSP

Path Consistency

EnforcePathConsistency (C ):
Input: a (binary) CSP C = 〈V,D,C〉 of size n
Output: an equivalent, but path consistent CSP C ′

repeat
for all 1 ≤ i, j,k ≤ n

Ri j := Ri j ∩
{

(x,y) : ex. z ∈ Dk s. t. (x,z) ∈ Rik and (y,z) ∈ R jk
}

endfor
until no binary constraint is changed

Ã Terminates in time O(n5 · k5) if we have finite domains (where k is the
number of values)

Ã Enforcing path consistency is solution invariant.
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Introduction Solving CSP

Local Consistency (3):
k-Consistency and Strong k-Consistency

Definition

◮ A binary CSP 〈V,D,C〉 is k-consistent if, given variables x1, . . . ,xk and an
assignment a : {x1, . . . ,xk−1}→ D that satisfies all constraint in these
variables, a can be extended to an assignment a′ : {x1, . . . ,xk}→ D that
satisfies all constraints in these k variables.

◮ A binary CSP 〈V,D,C〉 is strongly k-consistent if it is k′-consistent for
each k′ ≤ k.

◮ A binary CSP 〈V,D,C〉 is globally consistent if it is strongly n-consistent
where n is the size of V .
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Introduction Solving CSP

Local Consistency (3)

◮ k-consistency: The computation costs grow exponentially with k.

◮ If a CSP is globally consistent, then
◮ a solution can be constructed in polynomial time,

◮ its constraints are minimal,

◮ and it has a solution iff there is no empty constraint.

◮ k-consistent 6⇒ k−1-consistent
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Introduction Qualitative CSP

Qualitative Reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have

◮ infinite domains

◮ mostly only finitely many relations (basic relations and their unions)

◮ arc consistent CSPs (usually)

Questions:

◮ How do we achieve k-consistency (for some fixed k)?

◮ Is k-consistency (for some fixed k) enough to guarantee global
consistency?

◮ Is a CSP with only base relations always satisfiable?

(Knowledge Representation and Reasoning) Qualitative Reasoning January 16, 2006 23 / 34



Introduction Qualitative CSP

Operations on Binary Relations

Composition:
R1 ◦R2 =

{

(x,y) ∈ D2 : ∃z ∈ D s. t. (x,z) ∈ R1 and (z,y) ∈ R2
}

Converse:
R−1 =

{

(x,y) ∈ D2 : (y,x) ∈ R
}

Intersection:
R1 ∩R2 =

{

(x,y) ∈ D2 : (x,y) ∈ R1 and (x,y) ∈ R2
}

Union:
R1 ∪R2 =

{

(x,y) ∈ D2 : (x,y) ∈ R1 or (x,y) ∈ R2
}

Complement:
R =

{

(x,y) ∈ D2 : (x,y) 6∈ R
}
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Introduction Qualitative CSP

Conditions on Vocabulary for Qualitative Reasoning

◮ Let B be a finite set of (binary) base relations.
Ã The relations in B should be JEPD, i. e., jointly exhaustive and pairwise

disjoint.

◮ B should be closed under converse.
◮ Let A be the set of relations that can be built by taking the unions of

relations from B (Ã 2|B| different relations).
Ã A is closed under converse, complement, intersection and union.

◮ A should be closed under composition of base relations, i. e., for all
B,B′ ∈ B, B◦B′ ∈ A.

Ã A is closed under composition of arbitrary relations.
Ã This condition does not hold necessarily.

Example: B = {<,=,>} interpreted over the integers is not closed under
composition (and has no finite closure):

<◦< = <\{(i, j) : i = j−1} ( <
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Introduction Qualitative CSP

Computing Operations on Relations

Let A be a relation system over the set of base relations B that satisfies the
conditions spelled out above.

Ã We may write relations as sets of base relations:

B1 ∪·· ·∪Bn ∼ {B1, . . . ,Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . .Bn}◦{B′
1, . . . ,B

′
m} =

n
[

i=1

m
[

j=1

Bi ◦B′
j

Converse:
{B1, . . . ,Bn}

−1 = {B−1
1 , . . . ,B−1

n }

Complement:
{B1, . . . ,Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined set-theoretically.
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Introduction Qualitative CSP

Reasoning Problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

◮ Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

◮ Given in addition xRy: Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

◮ Compute for each pair x,y the strongest constrained (minimal) relation
entailed by the CSP.

Ã These problems are equivalent under Turing reductions
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Introduction Qualitative CSP

Reductions between CSP Problems

Theorem
CSAT, CENT and CMIN are equivalent under polynomial Turing reductions.

Proof.
CSAT ≤T CENT and CENT ≤T CMIN are obvious.

CENT ≤T CSAT: We solve CENT (CSP |= xRy?) by testing satisfiability of the
CSP extended by x{B}y where B ranges over all base relations. Let
B1, . . . ,Bk be the relations for which we get a positive answer. Then
x{B1, . . . ,Bk}y is entailed by the CSP.

CMIN ≤T CENT: We use entailment for computing the minimal constraint for
each pair. Starting with the universal relation, we remove one base relation
until we have a minimal relation that is still entailed.

(Knowledge Representation and Reasoning) Qualitative Reasoning January 16, 2006 28 / 34



Introduction Qualitative CSP

Path Consistency for Qualitative CSPs

Given a qualitative CSP with Ri j = R−1
ji . Then path consistency can be

enforced by doing the following:

Ri j := Ri j ∩ (Rik ◦Rk j).

Path consistency guarantees . . .

◮ sometimes minimality

◮ sometimes satisfiability

◮ however sometimes the CSP is not satisfiable, even if the CSP contains
only base relations

Ã All this depends on the vocabulary.
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Introduction Qualitative CSP

Example: Point Relations

Composition table:

< = >

< < < <,=,>

= < = >

> <,=,> > >

Figure: Composition table for the point algebra. For example: {<}◦{=} = {<}

◮ {<,=}◦{<} = {<}

◮ {<,>}◦{<} = {<,=,>}

◮ {<,=}−1 = {>,=}

◮ {<,=}∩{>,=} = {=}
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Introduction Qualitative CSP

Some Properties of the Point Relations

Theorem
A path consistent CSP over the point relations is consistent.

Corollary

CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem
A path consistent CSP over all point relations without {<,>} is minimal.

Proofs later . . .
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Introduction A Pathological Relation System

A Pathological Relation System

Let e,d, i be (self-converse) base relations between points on a circle:

◮ e: Rotation by 72 degrees (left or right)

◮ d: Rotation by 144 degrees (left or right)

◮ i: Identity

Composition table:

e◦ e = {i,d}

d ◦d = {i,e}

e◦d = {e,d}

d ◦ e = {e,d}

The following CSP is path
consistent and contains only
base relations, but it is not
satisfiable:

e
d

d

a b

cd

e

e

e
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Introduction Outlook

Outlook

◮ Qualitative representation and reasoning usually starts with a finite
vocabulary (a finite set of relations).

◮ Qualitative descriptions are usually simply logical theories consisting of
sets of atomic formulae (and some background theory).

◮ Reasoning problems are (as usual) satisfiability, model finding, and
deduction.

◮ Can be addressed with CSP methods (but note: infinite domains).

◮ Path consistency is the basic reasoning step . . . sometimes this is
enough.

◮ Usually, path-consistent atomic CSPs are satisfiable. However, there exist
some pathological relation systems.

◮ Can be taken further Ã relation algebra
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