
Semantic Networks and Description Logics
Description Logics – Implementation Techniques

Knowledge Representation and Reasoning

January 9, 2006

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 1 / 23



Description Logics – Implementation Techniques

Motivation

Classification

Subsumption Tests

Provisional Balance

Tableau Proofs

Preprocessing

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 2 / 23



Motivation

Motivation

◮ It is easy to write a subsumption checker for, e.g., ALC

◮ It is also easy to extend this to a small TBox/Abox system
◮ On top of that we need

1. a graphical user interface
2. an application interface with the right kind of services
3. an efficient implementation of the basic reasoning services

◮ Possible areas of optimization:
1. Classification
2. Subsumption test
3. Preprocessing the KB

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 3 / 23



Classification Partial-Order Sorting

Classification: Sorting in Partial Orders

◮ Compute the hierarchy induced by the subsumption relationship (similar
to sorting)

◮ Also important in other contexts
◮ Incremental creation

1. Find immediate subsumers and subsumees in hierarchy
2. Place new concept at this place (and delete superfluous links)

new

immediate

immediate

subsumers

subsumees

immediate

immediate

subsumers

subsumees

immediate

immediate

subsumers

subsumees

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 4 / 23



Classification Partial-Order Sorting

Worst-Case Lower Bound for Classification

◮ Count number of subsumption tests

◮ What is the worst case?

◮ Worst case: All concepts are unrelated

◮ O(n2) for n being the number of concept names.

◮ Analytical comparison (for the average case) between different methods
is probably difficult because it is unknown, how many partial orders exist
for a given number of elements

◮ Empirical comparisons are the best we can hope for

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 5 / 23



Classification Brute-Force Method

Method 0: Brute force

The brute-force method. For each new concept C:
◮ For each concept D in the hierarchy, check

◮ whether C subsumes D and
◮ whether D subsumes C.

◮ Compute from those the immediate subsumers and subsumees

◮ 2n tests for each new concept

◮ ∑n−1
i=0 2i = n× (n−1) for the whole KB

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 6 / 23



Classification Simple Traversal

Method 1: Simple Traversal

◮ Top search : Traverse hierarchy top down (e.g. depth-first), and try to
identify direct subsumers by checking subsumption and mark
subsumption failures.

positive

no test

negative

subsumption test:

◮ Bottom search : dual, from bottom element

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 7 / 23



Classification Smart Traversal

Method 2: Smart Traversal

◮ Exploit information from previous subsumption tests

◮ Use information about positive results in the top search path

positive

no test

negative

subsumption test: positive result inferrred

◮ Use information about negative results in the top search path

positive

no test

negative

subsumption test: negative information inferred

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 8 / 23



Classification Smart Traversal

Three Alternatives

◮ Note: Smart traversal is provably as good as simple traversal (counting
the number of subsumption tests) and the additional overhead is
negligible (0.5% of the subsumption costs in a typical KB)

◮ Alternatives:
1. Depth-first search using only positive information
2. Breadth-first search using only negative information
3. Depth-first search using both negative and positive information

◮ Our results: Breadth-first search is best. Using only positive information
does not help much.

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 9 / 23



Classification Smart Traversal

Smart Traversal: Bottom Search

◮ Dual optimization to top search (starting at bottom)

◮ In addition, it is sufficient to consider only nodes that are subsumed by all
immediate subsumers!

not necessary to test

necessary to test

above immediate
subsumees

immediate
subsumers

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 10 / 23



Classification Smart Traversal

Number of Subsumption Tests Relative to “Brute Force”
Method

◮ In 1992, we evaluated the effects of different techniques
◮ On real KBs, the book keeping overhead turned out to be relatively low

compared with the time for subsumption checking
◮ We measured the effects on randomly generated KBs modeled after the

structure of real KBs

Simple traversal Smart traversal
(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 11 / 23



Classification Chain Insertion

Method 3: Insertion into Chains

◮ Building up a linearly ordered list incrementally, it is a good idea to use
binary search for identifying the next insertion point

◮ Idea:
◮ Compute a good chain-covering of the partial order, i.e., a set of linearly

ordered chains covering all elements
◮ Minimal chain covering is (of course) NP-hard. Therefore we used a

heuristic
◮ Do a binary search in all chains
◮ and apply the same propagation of positive and negative information as in

the smart traversal
◮ One gets a super-set of the set of immediate subsumers (and subsumees)
◮ in most typical cases a little bit worse than with smart traversal (approx.

10%)
◮ better only if the connectedness of the order was higher than in typical KBs

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 12 / 23



Classification Chain Insertion

Results for Chain Insertion

Type No. of Average Average Breadth Depth Relative
of nodes degree no. of pred. no. of com-
KB & succ. parisons

184 1.71 5.67 105 6 103.7%
241 1.91 6.38 124 6 100.3%

real 254 1.99 13.02 135 6 91.8%
KB 269 1.72 5.16 164 7 107.9%

330 1.85 8.13 141 12 110.0%
298 2.36 8.88 142 8 115.7%

random 583 2.58 12.24 330 7 114.5%
KB 992 2.73 16.77 478 10 111.7%
mod. 1263 3.18 16.61 661 11 108.9%
after 1659 3.19 18.86 927 10 110.3%
real 2389 3.50 25.49 1188 10 111.3%
KB 3658 3.82 27.20 1703 8 105.3%

3905 4.04 33.95 1858 11 99.9%
301 7.67 42.11 88 8 73.2%
301 6.40 10.43 168 6 102.7%
301 4.22 5.68 205 4 101.3%
586 9.93 72.55 144 9 67.2%
586 10.39 20.42 301 7 103.3%

random 586 7.72 11.50 353 5 102.9%
partial 995 5.52 250.24 85 28 16.2%
orders 995 16.40 62.88 354 9 91.4%

995 13.58 28.38 506 6 105.1%
1266 5.78 321.19 100 30 12.9%
1266 18.22 76.87 438 9 89.8%
1266 17.82 41.70 592 6 101.1%

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 13 / 23



Classification Using Structural Information

Exploiting the Concept Structure

1. If a concept is defined conjunctively, i.e.,

A
.

= X ⊓Y ⊓ . . .⊓Z

all atomic concepts (X ,Y,Z) are obviously super-concepts. So one can
mark these concepts as subsuming (and can propagate this information)

2. Primitive concepts (introduced with ⊑) can be ignored in the bottom
search phase, if we classify in definition order (i.e., before a term is used,
it will be defined)

3. Primitive components of a concept are the undefined concepts in the
unfolded form of a concept. A subsumption test between two
conjunctively defined concepts can only be successful if the primitive
components are in an set-inclusion relationship

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 14 / 23



Subsumption Tests Caching and Lazy Unfolding

Caching and Lazy Unfolding

◮ Instead of unfolding a concept and then testing subsumption, one can
delay the expansion of a defined concept until no other way to prove
unsatisfiability is possible

◮ Instead of testing for clashes of primitive concepts, we also look for
clashes on the level of named, defined concepts.

◮ Finally, we can in addition also look for clashes implied by the
subsumption hierarchy, e.g., Man and ¬Human form a clash.

◮ These optimization saved roughly 50% of the runtime on the realistic KBs

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 15 / 23



Provisional Balance

Provisional Balance

◮ The described methods (and a few others) were used in speeding up the
KRIS system

◮ We achieved a speedup factor of around 400

◮ The difference between a first prototype implementation that just
implements the principles and a highly optimized system can be huge – in
particular when we are dealing with worst-case exponential time/space
problems

◮ Interestingly, the method we believed to be superior (chain insertion) was
not effective at all

◮ One has to look for what typical cases require – and these cases might
not be easily recognizable as polynomial special cases

◮ There are techniques especially geared towards more expressive DLs –
and some we will have a short look at

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 16 / 23



Tableau Proofs Semantic Branching in Tableau Proofs

Semantic Branching in Tableau Proofs

◮ Consider the System: S = {x : (A⊔B),x : (A⊔C)}

◮ Ordinarily,
◮ we would first try out A and B, nondeterministically.
◮ Then we would make another nondeterministic choice between A and C.

◮ if A leads to clash, we would try that out twice.

◮ Use semantic branching instead (similar to what is done in the
Davis-Putnam procedure)

◮ Branch over A and ¬A!

◮ This avoids double work on A and leads to tighter constraints (when using
¬A in the other branch)

◮ Experience shows that the additional overhead for propagating ¬A is
usually negligible

◮ Local simplification becomes possible

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 17 / 23



Tableau Proofs Local Simplification

Boolean Constraint Propagation

◮ When using semantic branching, we can also simplify disjunctions by
propagating the concepts, we have branched on, using Boolean
constraint propagation (aka unit propagation).

◮ Example:

S = {x : (C⊔ (D1 ⊓D2)),x : (¬D1 ⊔¬D2 ⊔C),x : ¬C}

◮ Because of x : ¬C, this can be simplified to

S = {x : (D1 ⊓D2),x : (¬D1 ⊔¬D2 ⊔C),x : ¬C}

◮ This in turn can be simplified to

S = {x : (D1 ⊓D2),x : C,x : ¬C}

◮ This is easily be detected as unsatisfiable!

◮ Note that no nondeterministic branching was necessary!

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 18 / 23



Tableau Proofs More Tableau Techniques

More Methods for Speeding up Tableau Proofs

◮ Dependency-directed backtracking: Try to detect the reason for a clash
and jump back (instead of exploring fruitless alternatives)

◮ Heuristic guided search: Branch on the right disjunct

◮ MOMS heuristic: Branch on the disjunct with the maximum number of
occurrences in disjunctions of minimum size.

◮ Seems not to be a good heuristic in DLs.

◮ The best heuristic seems to be oldest first, which selects a disjunct from
the disjunction depending on the least recent branching point

◮ Other techniques such as caching tableau trees and reusing them are
also possible

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 19 / 23



Preprocessing

Avoiding Internalization

◮ Internalization is a powerful technique to deal with general concept
inclusion statements (we have seen in the last lecture)

◮ However, it introduces a lot of non-deterministic choices. Remember:
Ci ⊑ Di is translated into Di ⊔¬Ci, which is enforced on every domain
element (using the quasi-universal role)

◮ Each inclusion statement leads to a nondeterministic choice point for
each element!

◮ Avoid if possible:
◮ Collect multiple primitive definitions:

(A ⊑C1), . . .(A ⊑Cn) ⇐⇒ (A ⊑C1 ⊓ . . .⊓Cn)

◮ Partition the terminology into two parts Tu and Tg, where the former is
unfoldable and the latter is the general part. Then we can apply lazy
unfolding to all statements in Tu.

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 20 / 23



Preprocessing

Absorption

◮ Since general inclusion statements lead to nondeterminism, it is a good
idea to reduce these as much as possible.

◮ Use the following equivalences to absorb general inclusion statements
into primitive concept definitions:

C1 ⊓C2 ⊑ D ⇐⇒ C1 ⊑ D⊓¬C2

C ⊑ D1 ⊓D2 ⇐⇒ (C ⊑ D1),(C ⊑ D2)

◮ Example Absorption. Assume: Geometric-figure⊑ Figure,
Geometric-figure⊓∃angles.Three⊑ ∃sides.Three.

◮ The latter inclusion statement can be massaged into:

Geometric-figure⊑ ∃sides.Three⊔¬∃angles.Three

◮ Then it can be absorbed into:

Geometric-figure⊑ Figure⊓∃sides.Three⊔¬∃angles.Three

◮ Using this technique can make a huge difference

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 21 / 23



Preprocessing

Conclusion

◮ Implementing inference methods for DLs is easy – if we do not care about
efficiency

◮ The difference between a prototype implementation and a carefully
optimized system can be several orders of magnitude

◮ Optimizations are possible on classification level, the subsumption testing
level, and the tableau proof level

◮ These optimization should be geared towards the typical case

◮ It is nearly impossible to decide analytically, which method is the right
one, only empirical comparisons can help here

◮ Note : Although there exists now a number of efficient DL methods, in
general there will remain the problem that sometimes these systems just
have to give up because a subsumption query is to difficult!

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 22 / 23



Literature

Literature

F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi, An
Empirical Analysis of Optimization Techniques for Terminological
Representation Systems or “Making KRIS get a move on”, Applied
Intelligence 4(2): 109-132, May 1994.

I. Horrocks, Implementation and Optimization Techniques, in: Baader, F.,
D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider
(eds.), The Description Logic Handbook: Theory, Implementation,
Applications, Cambridge University Press, Cambridge, UK, 2003.

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics January 9, 2006 23 / 23


	Motivation
	Classification
	Partial-Order Sorting
	Brute-Force Method
	Simple Traversal
	Smart Traversal
	Chain Insertion
	Using Structural Information

	Subsumption Tests
	Caching and Lazy Unfolding

	Provisional Balance
	Tableau Proofs
	Semantic Branching in Tableau Proofs
	Local Simplification
	More Tableau Techniques

	Preprocessing
	Literature

