Semantic Networks and Description Logics

Description Logics – Decidability and Complexity

Knowledge Representation and Reasoning

December XXX, 2005

Description Logics – Decidability and Complexity

Decidability & Undecidability

Polynomial Cases

Complexity of ALC Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Decidability

 L_2 is the fragment of first-order predicate logic using only two different variable names (*note*: variable names can be reused!).

 $L_2^{=}$ the same including equality.

Theorem

. $L_2^{=}$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.

Undecidability

- $ightharpoonup r \circ s$, $r \sqcap s$, $\neg r$, 1 [Schild 88]
- not relevant; Tarski had shown that already! for relation algebras
- ▶ $r \circ s$, r = s, $C \sqcap D$, $\forall r.C$ [Schmidt-Schauß 89]
- ► This is in fact a fragment of the early description logic *KL-ONE*, where people had hoped to come up with a complete subsumption algorithm

Decidable, Polynomial-Time Cases

- ► 𝓕Წ️ has obviously a polynomial subsumption problem (in the empty TBox) the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

$$C o A \mid \neg A \mid C \sqcap C' \mid \forall r.C \mid (\geq nr) \mid (\leq nr), \ r o t \mid r^{-1}$$
 and $C o A \mid C \sqcap C' \mid \forall r.C \mid \exists r, \ r o t \mid r^{-1} \mid r \sqcap r' \mid r \circ r'$ Open: $C o A \mid C \sqcap C' \mid \forall r.C \mid (\geq nr) \mid (\leq nr), \ r o t \mid r \circ r'.$

How Hard is ALC Subsumption?

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfi ability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$a_i \mapsto a_i$$
 $\psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi')$
 $\psi' \vee \psi \mapsto \pi(\psi) \sqcup \pi(\psi')$
 $\neg \psi \mapsto \neg \pi(\psi)$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^I$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^I$.

How Hard Does It Get?

- ▶ Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!
- ► We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic *K*
- Satisifiability and unsatisfiability in K is PSPACE-complete

Reduction from *K*-Satisfi ability

Lemma (Lower bound for ALC)

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules - assuming that b is a fixed role name

$$\Box \psi \quad \mapsto \quad \forall b.\pi(\psi)$$

$$\Diamond \psi \mapsto \exists b.\pi(\psi)$$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse that is an instances of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

Computational Complexity of ALC Subsumption

Lemma (Upper Bound for ALC)

ALC subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfi ability can be decided in PSPACE.

Theorem (Complexity of ALC)

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Further Consequences of the Reducibility of K to \mathcal{ALC}

- ▶ In the reduction we used only *one* role symbol. Are there modal logics that would require more than one such role symbol?
- \sim The multi-modal logic $K_{(n)}$ has n different Box operators \square_i (for n different agents)
- \rightsquigarrow \mathcal{ALC} is a *notational variant* of $K_{(n)}$ [Schild, IJCAI-91]
 - Are there perhaps other modal logics that correspond to other descriptions logics?
- propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, . . .
- → DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
- Algorithms and complexity results can be borrowed. Works also the other way around

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., 𝑓ဓ⁻ vs. 𝔻ဓϹ
- ▶ Does it make sense to use a language such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - 1. Use only *small* description logics with *complete* inference algorithms
 - 2. Use *expressive* description logics, but employ *incomplete* inference algorithms
 - 3. Use *expressive* description logics with *complete* inference algorithms
- ► For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on *option 3*!

Is Subsumption in the Empty TBox Enough?

- ► We have shown that we can *reduce* concept subsumption in a given TBox to concept subsumption in the empty TBox.
- ► However, it is not obvious that this can be done in *polynomial time*
- In particular, in the following example unfolding leads to an exponential blowup:

$$C_{1} \stackrel{\cdot}{=} \forall r.C_{0} \sqcap \forall s.C_{0}$$

$$C_{2} \stackrel{\cdot}{=} \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$\vdots$$

$$C_{n} \stackrel{\cdot}{=} \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

- ▶ Unfolding C_n leads to a concept description with a size $\Omega(2^n)$
- Is it possible to avoid this blowup?
- Can we avoid exponential preprocessing?

TBox Subsumption for Small Languages

- ▶ Question: Can we decide in polynomial time TBox subsumption for a description logic such as $\mathcal{F}L^-$, for which concept subsumption in the empty TBox can be decided in polynomial time?
- ▶ Let us consider $\mathcal{F} \mathcal{L}_0$: $C \sqcap D$, $\forall r.C$ with *terminological axioms*.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for $\mathcal{F} \mathcal{L}_0$ is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for *cycle-free* automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a $\mathcal{F} \mathcal{L}_0$ -terminology with the mapping π as follows:

```
automaton A \mapsto \text{terminology } \mathcal{T}_A
```

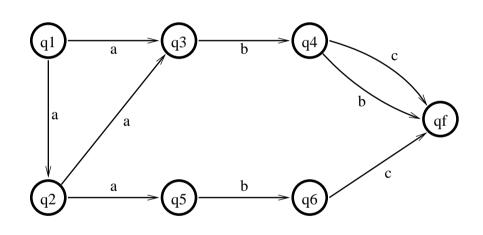
state
$$q \mapsto \text{concept name } q$$

terminal state
$$q_f \mapsto \text{concept name } q_f$$

input symbol
$$r \mapsto \text{role name } r$$

r-transition from
$$q$$
 to $q'\mapsto q\stackrel{\cdot}{=}\dots \sqcap \forall r: q'\sqcap\dots$

"Proof" by Example



$$q_1 \stackrel{:}{=} \forall a.q_3 \sqcap \forall a.q_2$$
 $q_2 \stackrel{:}{=} \forall a.q_3 \sqcap \forall a.q_5$
 $q_3 \stackrel{:}{=} \forall b.q_4$
 $q_4 \stackrel{:}{=} \forall b.q_f \sqcap \forall c.q_f$
 $q_5 \stackrel{:}{=} \forall b.q_6$
 $q_6 \stackrel{:}{=} \forall b.q_f$
 $q_1 \equiv \forall abc.q_f \sqcap \forall abb.q_f \sqcap \forall aabc.q_f \sqcap \forall aabb.q_f$
 $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$
 $q_1 \sqsubseteq_{\mathcal{T}} q_2 \text{ and } \mathcal{L}(q_2) \subseteq \mathcal{L}(g_1)$

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the *correctness of* the *reduction* and the *complexity result* follows.

What Does This Complexity Result Mean?

- ► Note that for expressive languages such as *ALC*, we do not notice any difference!
- ► The TBox subsumption complexity result for less expressive languages does not play a large role *in practice*
- Pathological situations do not happen very often
- ► In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding
- ▶ Similarly, also for the ALC concept descriptions, one notices that they are usually very well behaved.

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE)
- ► Early on, either small languages with provably easy reasoning problems (e.g., the system **CLASSIC**) or large languages with incomplete inference algorithms (e.g., the system **Loom**) were used.
- ► Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Literature

- Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. Tractable concept languages. In *Proceedings of the 12th International Joint Conference on Artifi cial Intelligence*, pages 458–465, Sydney, Australia, August 1991. Morgan Kaufmann.
- Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 466–471, Sydney, Australia, August 1991. Morgan Kaufmann.
- I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Description Logic SHIQ. In David MacAllester, ed., *Proceedings of the 17th International Conference on Automated Deduction (CADE-17)*, Germany, 2000. Springer Verlag.
- B. Nebel. Terminological Reasoning is Inherently Intractable, *Artifi cial Intelligence*, **43**: 235-249, 1990.