Semantic Networks and Description Logics

Description Logics – Algorithms

Knowledge Representation and Reasoning

December 14, 2005

Description Logics – Algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reasoning Problems & Algorithms

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Structural subsumption algorithms

- Normalization of concept descriptions and structural comparison
- very fast, but can only be used for small DLs

Tableau algorithms

- Similar to modal tableau methods
- Meanwhile the method of choice

Structural Subsumption Algorithms

► Small Logic \mathcal{FL}^-

- $C \sqcap D$
- ► $\forall r.C$
- $\exists r \text{ (simple existential quantification)}$
- Idea
 - 1. In the conjunction, collect all *universally quantified expressions* (also called *value restrictions*) with the same role and build *complex value restriction*:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

2. Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a *corresponding one* in the subsumed one.

Example

- D = Human $\sqcap \exists$ has-child $\sqcap \forall$ has-child.Human $\sqcap \forall$ has-child. \exists has-child
- $C = Human \sqcap Female \sqcap \exists has-child \sqcap$ $\forall has-child.(Human \sqcap Female \sqcap \exists has-child)$

Check: $C \sqsubseteq D$

- **1.** Collect value restrictions in *D*: ...∀has-child.(Human □ ∃has-child)
- 2. Compare:
 - **2.1** For Human in D, we have Human in C
 - **2.2** For \exists has-child in *D*, we have ...
 - **2.3** For \forall has-child.(...) in *D*, we have ...
 - 2.3.1 For Human ...
 - **2.3.2 For** \exists has-child...
- \rightsquigarrow *C* is subsumed by *D*!

Subsumption Algorithm

SUB(C,D) algorithm:

1. Reorder terms (commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \square \exists r_j \sqcap \square \forall r_k : C_k$$
$$D = \prod B_l \sqcap \square \exists s_m \sqcap \square \forall s_n : D_n$$

- **2.** For each B_l in D, is there an A_i in C with $A_i = B_l$?
- **3**. For each $\exists s_m$ in *D*, is there an $\exists r_j$ in *C* with $s_m = r_j$?
- 4. For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $C_k \sqsubseteq D_n$ and $s_n = r_k$?
- \rightarrow *C* \sqsubseteq *D* iff all questions are answered positively

Soundness

Theorem (Soundness) $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show: $(\forall r.(C \sqcap D))^{I} = (\forall r.C \sqcap \forall r.D)^{I}$

Assumption: $d \in (\forall r.(C \sqcap D))^{I}$ Case 1: $\not\exists e : (d, e) \in r^{I} \quad \checkmark$ Case 2: $\exists e : (d, e) \in r^{I} \Rightarrow e \in (C \sqcap D)^{I} \Rightarrow e \in C^{I}, e \in D^{I}$ Since *e* is arbitrary: $d \in (\forall r.C)^{I}, d \in (\forall r.D)^{I}$ then *d* must also be conjunction, i.e., $(\forall r.(C \sqcap D))^{I} \subseteq (\forall r.C \sqcap \forall r.D)^{I}$

Other direction is similar

(2+3+4): Induction on the nesting depth of \forall -expressions

Completeness

Theorem (Completeness) $C \sqsubseteq D \Rightarrow SUB(C,D)$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

 $d \in C^{I}$, but $d \notin D^{I}$

(Knowledge Representation and Reasoning) Semantic Networks and Description Logics

Generalizing the Algorithm

Extensions of \mathcal{FL}^- by

- $\blacktriangleright \neg A$ (atomic negation),
- ► $(\leq nr)$, $(\geq nr)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

ABox Reasoning

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

Tableau Method

► Logic *ALC*

- $\blacktriangleright C \sqcap D$
- $\blacktriangleright C \sqcup D$
- $\blacktriangleright \neg C$
- ► $\forall r.C$
- ► $\exists r.C$
- Idea: Decide (un-)satisfiability of a concept description C by trying to systematically construct a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.

Example: Subsumption in a TBox

TBox

Hermaphrodite = Male □ Female Parents-of-sons-and-daughters =

∃has-child.Male⊓∃has-child.Female

 $\texttt{Parents-of-hermaphrodite} \doteq \exists \texttt{has-child}.\texttt{Hermaphrodite}$

Query

Parents-of-sons-and-daughters $\sqsubseteq_{\mathcal{T}}$

Parents-of-hermaphrodites

Reductions

1. Unfolding

∃has-child.Male⊓∃has-child.Female⊑ ∃has-child.(Male⊓Female)

2. Reduction to unsatisfiability

```
Is
∃has-child.Male□∃has-child.Female□
¬(∃has-child.(Male□Female))
unsatisfiable?
```

- 4. Try to construct a model

Model Construction (1)

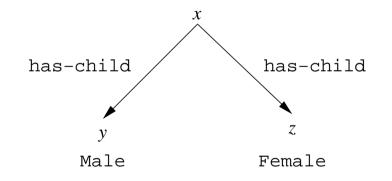
1. Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists \ldots)^I$$

- 2. This implies that *x* is in the interpretation of all conjuncts:
 - $x \in (\exists has-child.Male)^I$
 - $x \in (\exists has-child.Female)^I$
 - $x \in (\forall \texttt{has-child.}(\neg \texttt{Male} \sqcup \neg \texttt{Female}))^{I}$
- 3. This implies that there should be objects y and z such that $(x,y) \in has-child^{I}$, $(x,z) \in has-child^{I}$, $y \in Male^{I}$ and $z \in Female^{I}$ and ...

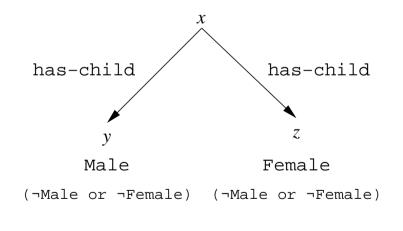
Model Construction (2)

- $x: \exists has-child.Male$
- $x: \exists has-child.Female$



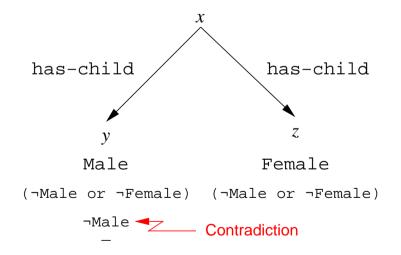
Model Construction (3)

x:∃has-child.Male
x:∃has-child.Female
x:∀hat-child.(¬Male□¬Female)



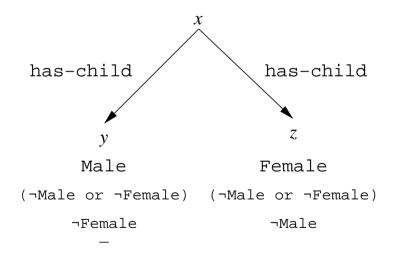
Model Construction (4)

x:∃has-child.Male
x:∃has-child.Female
x:∀hat-child.(¬Male□¬Female)
y:¬Male



Model Construction (5)

x:∃has-child.Male
x:∃has-child.Female
x:∀hat-child.(¬Male□¬Female)
y:¬Female
z:¬Male



(Knowledge Representation and Reasoning)

Tableau Method (1): NNF

 $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg \neg C \equiv C$$

$$\neg (\forall r.C) \equiv \exists r. \neg C$$

$$\neg (\exists r.C) \equiv \forall r. \neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: **negation normal form (NNF)**

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

Tableau Method (2): Constraint Systems

A **constraint** is a syntactical object of the form: x: C or xry, where *C* is a concept description in NNF, *r* is a role name and *x* and *y* are *variable names*. Let *I* be an interpretation. An *I*-assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

A constraint *x*: *C* (*xry*) is satisfied by an *I*-assignment α , if $\alpha(x) \in C^{I}$ ($(\alpha(x), \alpha(y)) \in r^{I}$).

A constraint system *S* is a finite, non-empty set of constraints. An *I*-assignment α satisfies *S* if α satisfies each constraint in *S*. *S* is satisfiable if there exists *I* and α such that α satisfies *S*.

Theorem

An ALC concept *C* in NNF is satisfiable iff the system $\{x: C\}$ is satisfiable.

Tableau Method (3): Transforming Constraint Systems

Transformation rules:

- 1. $S \rightarrow_{\Box} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \Box C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in S.
- 2. $S \rightarrow_{\sqcup} \{x: D\} \cup S$ if $(x: C_1 \sqcup C_2) \in S$ and neither $(x: C_1) \in S$ nor $(x: C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **3.** $S \rightarrow_{\exists} \{xry, y: C\} \cup S$ if $(x: \exists r.C) \in S$, *y* is a *fresh variable*, and there is no *z* s.t. $(xrz) \in S$ and $(z: C) \in S$.
- 4. $S \rightarrow_{\forall} \{y : C\} \cup S$ if $(x : \forall r.C), (xry) \in S$ and $(y : C) \notin S$.

Deterministic rules (1,3,4) vs. non-deterministic (2). Generating rules (3) vs. non-generating (1,2,4).

Tableau Method (4): Invariances

Theorem (Invariance)

Let *S* and *T* be constraint systems:

- 1. If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.
- 2. If *T* has been generated by applying a non-deterministic rule to *S*, then *S* is satisfiable if *T* is satisfiable. Furthermore, if a non-deterministic rule can be applied to *S*, then it can be applied such that *S* is satisfiable iff the resulting system *T* is satisfiable.

Theorem (Termination)

Let *C* be an $A \perp C$ concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x: C\}$.

Tableau Method (5): Soundness and Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form x: A and $x: \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea.

 \Rightarrow : obvious. \Leftarrow : Construct a model by using the concept labels.

Space Requirements

Because the tableau method is *non-deterministic* (\rightarrow_{\sqcup} rule) ... there could be exponentially many closed constraint systems in the end. Interestingly, even one constraint system can have *exponential size*. **Example**:

$$\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. \left(\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. (\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. (\exists r.A \sqcap \exists r.B \sqcap$$
$$\forall r. (\ldots)) \right)$$

However: One can modify the algorithm so that it needs only poly. space. Idea: Generating a y only for one $\exists r.C$ and then proceeding into the depth.

ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

Literature

- Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. *Computational Intelligence*, 3:78–93, 1987.
- Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. *Artificial Intelligence*, 48:1–26, 1991.
- Bernhard Hollunder and Werner Nutt. Subsumption Algorithms for Concept Languages. DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.
- F. Baader and U. Sattler. An Overview of Tableau Algorithms for Description Logics. *Studia Logica*, 69:5-40, 2001.
- I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description Logics. *Logic Journal of the IGPL*, 8(3):239-264, May 2000.