Semantic Networks and Description Logics

Description Logics – Terminology and Notation

Knowledge Representation and Reasoning

December 7, 2005

Description Logics – Terminology and Notation

Introduction

Concept and Roles

TBox and ABox

Reasoning Services

Outlook

Motivation

- ► Main problem with semantic networks and frames
- The lack of formal semantics!
- Disadvantage of simple inheritance networks
- Concepts are atomic and do not have any structure
- → Brachman's structural inheritance networks (1977)

Structural Inheritance Networks

- Concepts are defined/described using a small set of well-defined operators
- Distinction between conceptual and object-related knowledge
- Computation of subconcept relation and of instance relation
- Strict inheritance (of the entire structure of a concept)

Systems and Applications

▶ Systems:

- KL-ONE: First implementation of the ideas (1978)
- then NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK
- ... currently FaCT, DLP, RACER 1998

► Applications:

- First, natural language understanding systems
- ...then configuration systems,
- ...information systems,
- ... currently, it is one tool for the semantic web
- DAML+OIL, now OWL

Description Logics

- Previously also KL-ONE-alike languages, frame-based languages, terminological logics, concept languages
- **Description Logics (DL)** allow us
 - to describe concepts using complex descriptions,
 - to introduce the terminology of an application and to structure it (TBox),
 - to introduce objects (ABox) and relate them to the introduced terminology,
 - and to reason about the terminology and the objects.

Informal Example

Male is: the opposite of female

A human is a kind of: living entity

A woman is: a human and a female a human and a male

A mother is: a woman with at least one child that is a human

A father is: a man with at least one child that is a human

A parent is: a mother or a father

A grandmother is: a woman, with at least one child that is a parent

A mother-wod is: a mother with only male children

Elizabeth is a woman Possible Questions:

Charles is a man Is Diana a parent?

Diana is a mother-wod Is William a man?

Diana has the child William Is Elizabeth a mother-wod?

Atomic Concepts and Roles

Concept names:

- ► E.g., Grandmother, Male, ... (in the following usually *capitalized*)
- \blacktriangleright We will use **symbols** such as A, A_1, \ldots
- ▶ Semantics: Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^I \subseteq \mathcal{D}$.

► Role names:

- ▶ In our example, e.g., child. Often we will use names such as has-child or something similar (in the following usually *lowercase*).
- ► Role names are *disjoint* from concept names
- **Symbolically**: t, t_1, \ldots
- ▶ Semantics: Dyadic predicates $t(\cdot, \cdot)$ or set-theoretically $t^I \subseteq \mathcal{D} \times \mathcal{D}$.

Concept and Role Description

- Out of concept and role names, complex descriptions can be created
- ▶ In our example, e.g. "a Human and Female."
- **Symbolically**: *C* for concept descriptions and *r* for role descriptions
- Which particular constructs are available depends on the chosen description logic
- ▶ Predicate logic semantics: A concept descriptions C corresponds to a formula C(x) with the free variable x. Similarly with r: It corresponds to formula r(x,y) with free variables x,y.
- ▶ Set semantics:

$$C^{I} = \{d \mid C(d) \text{ "is true in" } I\}$$
 $r^{I} = \{(d,e) \mid r(d,e) \text{ "is true in" } I\}$

Boolean Operators

- ► Syntax: let *C* and *D* be concept descriptions, then the following are also concept descriptions:
 - $ightharpoonup C \sqcap D$ (Concept conjunction)
 - $ightharpoonup C \sqcup D$ (Concept disjunction)
 - $ightharpoonup \neg C$ (Concept negation)
- **► Examples**:
 - ► Human \sqcap Female
 - ► Father ⊔ Mother
 - ▶ ¬ Female
- ▶ Predicate logic semantics: $C(x) \land D(x)$, $C(x) \lor D(x)$, $\neg C(x)$
- ▶ Set semantics: $C^I \cap D^I$, $C^I \cup D^I$, $D C^I$

Role Restrictions

► Motivation:

- Often we want to describe something by restricting the possible "fillers" of a role, e.g. Mother-wod.
- Sometimes we want to say that there is at least a filler of a particular type,
 e.g. Grandmother
- ▶ Idea: Use quantifiers that range over the role-fillers

 - ▶ Woman □ ∃has-child.Parent
- ► Predicate logic semantics:

$$(\exists r.C)(x) = \exists y : (r(x,y) \land C(y))$$
$$(\forall r.C)(x) = \forall y : (r(x,y) \rightarrow C(y))$$

Set semantics:

$$(\exists r.C)^I = \{d | \exists e : (d,e) \in r^I \land e \in C^I \}$$
$$(\forall r.C)^I = \{d | \forall e : (d,e) \in r^I \rightarrow e \in C^I \}$$

Cardinality Restriction

- **►** Motivation
 - ▶ Often we want to describe something by restricting the number of possible "fillers" of a role, e.g., a Mother with at least 3 children or at most 2 children.
- ▶ Idea: We restrict the cardinality of the role filler sets:
 - ▶ Mother \sqcap (≥ 3 has-child)
 - ▶ Mother \sqcap (\leq 2 has-child)
- ► Predicate logic semantics:

$$(\geq n \ r)(x) = \exists y_1 \dots y_n : (r(x, y_1) \wedge \dots \wedge r(x, y_n) \wedge y_1 \neq y_2 \wedge \dots \wedge y_{n-1} \neq y_n)$$

$$(\leq n \ r)(x) = \neg(\geq n+1 \ r)(x)$$

► Set semantics:

$$(\geq n \ r)^{I} = \{d \ | \ |\{e|r^{I}(d,e)\}| \geq n\}$$
$$(\leq n \ r)^{I} = \mathcal{D} - (\geq n+1 \ r)^{I}$$

Inverse Roles

- **Motivation**:
 - How can we describe the concept "children of rich parents"?
- ▶ Idea: Define the "inverse" role for a given role (the converse relation)
 - ► has-child⁻¹
- ▶ Application: \exists has-child⁻¹.Rich
- Predicate logic semantics:

$$r^{-1}(x,y) = r(y,x)$$

▶ Set semantics:

$$(r^{-1})^{I} = \{(d,e) | (e,d) \in r^{I}\}$$

Role Composition

- **►** Motivation:
 - ▶ How can we define the role has-grandchild given the role has-child?
- Idea: Compose roles (as one can compose binary relations)
 - has-child o has-child
- ► Predicate logic semantics:

$$(r \circ s)(x,y) = \exists z : (r(x,z) \land s(z,y))$$

► Set semantics:

$$(r \circ s)^I = \{(d,e) \mid \exists f : (d,f) \in r^I \land (f,e) \in s^I \}$$

Role Value Maps

- **►** Motivation:
 - How do we express the concept "women who know all the friends of their children"
- Idea: Relate role filler sets to each other
 - ▶ Woman □ (has-child ∘ has-friend □ knows)
- Predicate logic semantics:

$$(r \sqsubseteq s)(x) = \forall y : (r(x,y) \rightarrow s(x,y))$$

▶ Set semantics: Let $r^{I}(d) = \{e \mid r^{I}(d,e)\}.$

$$(r \sqsubseteq s)^I = \{d | r^I(d) \subseteq s^I(d)\}$$

Note: Role value maps lead to undecidability of satisfiability of concept descriptions!

Terminology Box

- In order to introduce new terms, we use two kinds of terminological axioms:
 - $A \doteq C$
 - $ightharpoonup A \sqsubseteq C$

where A is a concept name and C is a concept description.

- A terminology or TBox is a finite set of such axioms with the following additional restrictions:
 - ▶ no multiple definitions of the same symbol such as $A \doteq C$, $A \sqsubseteq D$
 - ▶ no cyclic definitions (even not indirectly), such as $A \doteq \forall r.B, B \doteq \exists s.A$

TBoxes: Semantics

- TBoxes restrict the set of possible interpretations.
- Predicate logic semantics:
 - ▶ $A \doteq C$ corresponds to $\forall x : (A(x) \leftrightarrow C(x))$ ▶ $A \sqsubseteq C$ corresponds to $\forall x : (A(x) \rightarrow C(x))$
- Set semantics:
 - $ightharpoonup A \doteq C$ corresponds to $A^I = C^I$
 - $A \sqsubseteq C$ corresponds to $A^I \subseteq C^I$
- Non-empty interpretations which satisfy all terminological axioms are called **models** of the TBox.

Assertional Box

- ► In order to state something about objects in the world, we use two forms of assertions:
 - ► a : C
 - ightharpoonup (a,b): r

where a and b are **individual names** (e.g., ELIZABETH, PHILIP), C is a concept description, and r is a role description.

An ABox is a finite set of assertions.

ABoxes: Semantics

- ► Individual names are interpreted as elements of the universe under the unique-name-assumption, i.e., different names refer to different objects.
- Assertions express that an object is an instance of a concept or that two objects are related by a role.
- Predicate logic semantics:
 - $ightharpoonup a: C ext{ corresponds to } C(a)$
 - (a,b): r corresponds to r(a,b)
- ▶ Set semantics:
 - $ightharpoonup a^I \in D$
 - ▶ a:C corresponds to $a^I \in C^I$
 - (a,b): r corresponds to $(a^I,b^I) \in r^I$
- Models of an ABox and of ABox+TBox can be defined analogously to models of a TBox.

Example TBox

```
Male \doteq \neg Female

Human \sqsubseteq Living\_entity

Woman \doteq Human \sqcap Female

Man \doteq Human \sqcap Male

Mother \doteq Woman \sqcap \exists has\_child.Human

Father \doteq Man \sqcap \exists has\_child.Human

Parent \doteq Father \sqcup Mother

Grandmother \doteq Woman \sqcap \exists has\_child.Parent

Mother-without-daughter \doteq Mother \sqcap \forall has\_child.Male

Mother-with-many-children \doteq Mother \sqcap (\geq 3 has\_child)
```

Example ABox

CHARLES: Man DIANA: Woman

EDWARD: Man ELIZABETH: Woman

ANDREW: Man

DIANA: Mother-without-daughter

(ELIZABETH, CHARLES): has-child (ELIZABETH, EDWARD): has-child (ELIZABETH, ANDREW): has-child (DIANA, WILLIAM): has-child

(CHARLES, WILLIAM): has-child

Some Reasoning Services

- ▶ Does a description C make sense at all, i.e., is it satisfiable?
- A concept description C is satisfiable iff there exists an interpretation I such that $C^I \neq \emptyset$.
- Is one concept a specialization of another one, is it subsumed?
- ► C is **subsumed by** D, in symbols $C \sqsubseteq D$ iff we have for all interpretations $C^I \subseteq D^I$.
- ► Is *a* an **instance** of a concept *C*?
- lacktriangleq a is an instance of C iff for all interpretations, we have $a^I \in C^I$.
- Note: These questions can be posed with or without a TBox that restricts the possible interpretations.

Outlook

- Can we reduce the reasoning services to perhaps just one problem?
- What could be reasoning algorithms?
- What about complexity and decidability?
- What has all that to do with modal logics?
- ► How can one build **efficient systems**?

Literature

- Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, *The Description Logic Handbook: Theory, Implementation, Applications*, Cambridge University Press, Cambridge, UK, 2003.
- Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. *Cognitive Science*, 9(2):171–216, April 1985.
- Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder, Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich. Terminological Knowledge Representation: A proposal for a terminological logic. Published in Proc. *International Workshop on Terminological Logics*, 1991, DFKI Document D-91-13.
- Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New York, 1990.

Summary: Concept Descriptions

Abstract	Concrete	Interpretation
A	A	A^{I}
$C\sqcap D$	(and CD)	$C^I\cap D^I$
$C \sqcup D$	(or CD)	$C^I \cup D^I$
$\neg C$	(not <i>C</i>)	$\mathcal{D} - C^I$
$\forall r.C$	(all <i>r C</i>)	$\{d\in\mathcal{D}\mid r^{I}\left(d ight)\subseteq C^{I}\}$
$\exists r$	(some r)	$\left\{ d\in\mathcal{D}\mid r^{I}\left(d ight) eq\emptyset ight\}$
$\geq n r$	(atleast $n r$)	$\{d\in\mathcal{D}\mid\left r^{I}\left(d ight) ight \geq n\}$
$\leq n r$	(atmost n r)	$\{d \in \mathcal{D} \mid r^{I}(d) \leq n\}$
$\exists r.C$	(some <i>r C</i>)	$\{d\in\mathcal{D}\mid r^{I}\left(d ight)\cap C^{I} eq\emptyset\}$
$\geq n r.C$	(atleast $n r C$)	$\{d \in \mathcal{D} \mid r^{I}(d) \cap C^{I} \geq n\}$
$\leq n r.C$	(atmost n r C)	$\{d \in \mathcal{D} \mid r^{I}(d) \cap C^{I} \leq n\}$
$r \stackrel{\cdot}{=} s$	(eq <i>r s</i>)	$\{d \in \mathcal{D} \mid r^{I}(d) = s^{I}(d)\}$
$r \neq s$	(neq <i>r s</i>)	$\{d \in \mathcal{D} \mid r^{I}(d) \neq s^{I}(d)\}$
$r \sqsubseteq s$	(subset r s)	$\{d \in \mathcal{D} \mid r^{I}(d) \subseteq s^{I}(d)\}$
$g \stackrel{\cdot}{=} h$	(eq g h)	$\left\{ d\in\mathcal{D}\mid g^{I}\left(d ight)=h^{I}\left(d ight) eq\emptyset ight\}$
$g \neq h$	(neq g h)	$\left\{ d\in\mathcal{D}\mid\emptyset eq g^{I}\left(d ight) eq h^{I}\left(d ight) eq\emptyset ight\}$
$\{i_1,i_2,\ldots,i_n\}$	(oneof $i_1 \dots i_n$)	$\{i_1^I, i_2^I, \dots, i_n^I\}$

Summary: Role Descriptions

Abstract	Concrete	Interpretation
t	t	t^{I}
f	f	f^{I} , (functional role)
$r \sqcap s$	(and <i>r s</i>)	$r^I \cap s^I$
$r \sqcup s$	(or <i>r s</i>)	$r^I \cup s^I$
$\neg r$	(not <i>r</i>)	$\mathcal{D} imes \mathcal{D} - r^I$
r^{-1}	(inverse r)	$\{(d,d') \mid (d',d) \in r^I\}$
$ r _C$	$(restr \ r \ C)$	$\{(d,d')\in r^I\mid d'\in C^I\}$
r^+	(trans r)	$(r^I)^+$
$r \circ s$	(compose $r s$)	$r^I \circ s^I$
1	self	$\{(d,d) \mid d \in \mathcal{D}\}$