Outline

Minimal Model Reasoning

Motivation

Definition

Example

Embedding in DL

Nonmonotonic Logic Programs

Motivation

Answer Sets

Complexity

Stratification

Applications

Literature

Minimal Model Reasoning

- Conflicts between defaults in Default Logic lead to multiple extensions.
- Each extension corresponds to a maximal set of non-violated defaults.
- Reasoning with defaults can also be achieved by a simpler mechanism: predicate or propositional logic + minimize the number of cases where a default (expressed as a conventional formula) is violated => minimal models.
- Notion of minimality: cardinality vs. set-inclusion.

Entailment with respect to Minimal Models

Definition

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$ a set of abnormalities.

Then $\Phi \models_B \psi$ (ψ *B*-minimally follows from Φ) if $I \models \psi$ for all interpretations I such that $I \models \Phi$ and there is no I' such that $I' \models \Phi$ and $\{b \in B | I' \models b\} \subset \{b \in B | I \models b\}$.

Minimal models: example

$$\Phi = \left\{ \begin{array}{ll} \text{student} \wedge \neg \text{ABstudent} \rightarrow \neg \text{earnsmoney}, & \text{student}, \\ \text{adult} \wedge \neg \text{ABadult} \rightarrow \text{earnsmoney}, & \text{student} \rightarrow \text{adult} \end{array} \right\}$$

 Φ has the following models.

```
I_1 \models \operatorname{student} \land \operatorname{adult} \land \operatorname{earnsmoney} \land \operatorname{ABstudent} \land \operatorname{ABadult}
I_2 \models \operatorname{student} \land \operatorname{adult} \land \neg \operatorname{earnsmoney} \land \operatorname{ABstudent} \land \operatorname{ABadult}
I_3 \models \operatorname{student} \land \operatorname{adult} \land \operatorname{earnsmoney} \land \operatorname{ABstudent} \land \neg \operatorname{ABadult}
I_4 \models \operatorname{student} \land \operatorname{adult} \land \neg \operatorname{earnsmoney} \land \neg \operatorname{ABstudent} \land \operatorname{ABadult}
```

Relation to Default Logic

We can embed propositional minimal model reasoning in the propositional Default Logic.

Theorem

Let A be a set of atomic propositions. Let Φ be a set of propositional formulae on A, and $B \subseteq A$.

Then $\Phi \models_B \psi$ if and only if ψ follows from $\langle D, W \rangle$ skeptically, where

$$D = \left\{ \left. rac{:
eg b}{
eg b} \right| b \in B
ight\} \ ext{and} \ W = \Phi.$$

Relation to Default Logic: Proof

Proof sketch.

 \Rightarrow Assume there is extension E of $\langle D, W \rangle$ such that $\psi \notin E$. Hence there is an interpretation I such that $I \models E$ and $I \models \neg \psi$.

By the fact that there is no extension F such that $E \subset F$, I is a B-minimal model of Φ . Hence Ψ does not B-minimally follow from Φ .

 \Leftarrow Assume ψ does not B-minimally follow from Φ . Hence there is an B-minimal model I of Φ such that $I \not\models \psi$. Define

 $E = \mathsf{Th}(\Phi \cup \{\neg b | b \in B, I \models \neg b\})$. Now $I \models E$ and because $I \not\models \psi, \psi \not\in E$.

We can show that E is an extension of $\langle D, W \rangle$.

Because there is extension E such that $\psi \notin E$, ψ does not skeptically follow from $\langle D, W \rangle$.

Nonmonotonic Logic Programs: Background

- Answer set semantics: a formalization of negation-as-failure in logic programming (Prolog)
- ► Other formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic.
- A better alternative to the propositional logic in some applications.

Nonmonotonic Logic Programs

- ▶ Rules $c \leftarrow b_1, \dots, b_m,$ not $d_1, \dots,$ not d_k where $\{c, b_1, \dots, b_m, d_1, \dots, d_k\} \subseteq A$ for a set $A = \{a_1, \dots, a_n\}$ of propositions.
- Meaning similar to default logic: If
 - 1. we have derived b_1, \ldots, b_m and
 - 2. cannot derive any of d_1, \ldots, d_k ,

then derive c.

- ► Rules without right-hand side: c ←
- ▶ Rules without left-hand side: $\leftarrow b_1, ..., b_m$, not $d_1, ...,$ not d_k

Answer Sets – Formal Definition

▶ Reduct P^{Δ} of a program P with respect to a set of atoms $\Delta \subseteq A$:

$$\{c \leftarrow b_1, \ldots, b_m \mid \\ (c \leftarrow b_1, \ldots, b_m, \mathsf{not}\ d_1, \ldots, \mathsf{not}\ d_k) \in P, \\ \{d_1, \ldots, d_k\} \cap \Delta = \emptyset\}$$

- ► Closure $dcl(P) \subseteq A$ of a set P of rules without **not** is defined by iterative application of the rules in the obvious way.
- ▶ A set of propositions $\Delta \subseteq A$ is an answer set of P iff $\Delta = dcl(P^{\Delta})$.

Examples

$$ightharpoonup P_1 = \{a \leftarrow, b \leftarrow a, c \leftarrow b\}$$

- $P_2 = \{a \leftarrow b, b \leftarrow a\}$
- $P_3 = \{ p \leftarrow \mathsf{not}\ p \}$
- $P_4 = \{ p \leftarrow \mathsf{not}\ q, \quad q \leftarrow \mathsf{not}\ p \}$
- $P_5 = \{ p \leftarrow \mathsf{not} \ q, \quad q \leftarrow \mathsf{not} \ p, \quad \leftarrow p \}$

Complexity: existence of answer sets is NP-complete

- 1. Membership in NP: Guess $\Delta \subseteq A$ (nondet. polytime), compute P^{Δ} , compute its closure, compare to Δ (everything det. polytime).
- 2. NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \mathsf{not} \; \hat{p}$$
$$\hat{p} \leftarrow \mathsf{not} \; p$$

for every proposition p occurring in the clauses, and

$$\leftarrow$$
 not l'_1 , not l'_2 , not l'_3

for every clause $l_1 \vee l_2 \vee l_3$, where $l_i' = p$ if $l_i = p$ and $l_i' = \hat{p}$ if $l_i = \neg p$.

Programs for Reasoning with Answer Sets

- smodels (Niemelä & Simons), dlv (Eiter et al.), ...
- Schematic input:

Difference to the Propositional Logic

- ▶ The *ancestor* relation is the transitive closure of the *parent* relation.
- Transitive closure cannot be (concisely) represented in propositional/predicate logic.

```
par(X,Y) \rightarrow anc(X,Y)

par(X,Z) \land anc(Z,Y) \rightarrow anc(X,Y)
```

The above formulae only guarantee that *anc* is a *superset* of the transitive closure of *par*.

► For transitive closure one needs the minimality condition in some form: nonmonotonic logics, fixpoint logics, ...

Stratification

The reason for multiple answer sets is the fact that a may depend on b and simultaneously b may depend on a.

The lack of this kind of circular dependencies makes reasoning easier.

Definition

A logic program P is stratified if P can be partitioned to $P = P_1 \cup \cdots \cup P_n$ so that for all $i \in \{1, \ldots, n\}$ and $(c \leftarrow b_1, \ldots, b_m, \text{not } d_1, \ldots, \text{not } d_k) \in P_i$,

- 1. there is no not c in P_i and
- 2. there are no occurrences of c anywhere in $P_1 \cup \cdots \cup P_{i-1}$.

Stratification

Theorem

A stratified program P has exactly one answer set. The unique answer set can be computed in polynomial time.

Example

Our earlier examples with more than one or no answer sets:

$$P_3 = \{ p \leftarrow \text{not } p \}$$

$$P_4 = \{ p \leftarrow \text{not } q, \quad q \leftarrow \text{not } p \}$$

Applications of Logic Programs

- 1. Simple forms of default reasoning (inheritance networks)
- 2. A solution to the frame problem: instead of using frame axioms, use defaults

$$a_{t+1} \leftarrow a_t, \mathsf{not} \ \neg a_{t+1}$$

By default, truth-values of facts stay the same.

- 3. deductive databases (Datalog[¬])
- 4. et cetera: Everything that can be done with propositional logic can also be done with propositional nonmotononic logic programs.

Literature

- M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, *Proceedings of the Fifth International Conference on Logic Programming*, The MIT Press, 1988.
- I. Niemelä and P. Simons. Smodels an implementation of the stable model and well-founded semantics for normal logic programs, *Proceedings of the 4th International Conference on Logic Programming and Non-monotonic Reasoning*, 1997.
- T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative problem solving using the dlv system. In J Minker, editor, Logic Based AI, Kluwer Academic Publishers, 2000.