Complexity Theory

Knowledge Representation and Reasoning

November 2, 2005

Outline
Motivation
Reminder: Basic Notions
Algorithms and Turing Machines
Problems, Solutions, and Complexity
Complexity Classes P and NP
Upper and Lower Bounds
Polynomial Reductions
NP-Completeness
Beyond NP
The Class co-NP
The Class PSPACE
Other Classes
Oracle TMs and the Polynomial Hierarchy
Oracle Turing-Machines
Turing Reduction
Complexity Classes Based on OTMsQBF

Motivation for Using Complexity Theory

- Complexity theory can answer us questions how easy or hard a problem is
\rightsquigarrow Gives hints on what appropriate algorithms could be,e.g.,
- algorithms for polynomial-time problems are usually easy to design
- for NP-complete problems, backtracking and local search work well
\rightsquigarrow Gives us hint on what type of algorithms will (most probably) not work
- for problem that are believed to be harder than NP-complete ones, simple backtracking will not work
\rightsquigarrow Gives hint on what sub-problem might be interesting

Algorithms and Turing Machines

- We use Turing machines as formal models of algorithms
- This is justified, because
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM or simply TM
- Often, however, we use the notion of nondeterministic TMs: NDTM

Problems, Solutions, and Complexity

- A problem is a set of pairs (I, A) of strings in $\{0,1\}^{*}$.

I: Instance
A : Answer. If $A \in\{0,1\}$: decision problem
\rightsquigarrow A decision problem is the same as a formal language (namely the set of strings formed by the instances with answer 1)

- An algorithm decides (or solves) a problem if it computes the right answer for all instances.
- The complexity of an algorithm is a function

$$
T: \mathbf{N} \rightarrow \mathbf{N}
$$

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

- The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.

Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
\rightarrow Problems in \mathbf{P} are said to be efficiently solvable (although this might not be true if the exponent is very large)
\rightsquigarrow In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on nondeterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory.

Upper and Lower Bounds

- Upper bounds (membership in a class) are usually easy to prove:
\rightsquigarrow provide an algorithm
\rightsquigarrow show that the resource bounds are respected.
- Lower bounds (hardness for a class) are usually difficult to show.
\rightsquigarrow the technical tool here is the polynomial reduction (or any other appropriate reduction).
\rightsquigarrow show that some hard problem can be reduced to the problem at hand

Polynomial Reductions

- Given two languages L_{1} and L_{2}, L_{1} can be polynomially reduced to L_{2}, written $L_{1} \leq_{p} L_{2}$, iff there exists a polynomially computable function f such that

$$
x \in L_{1} \text { iff } f(x) \in L_{2}
$$

\rightarrow It cannot be harder to decide L_{1} than L_{2}
$\rightarrow L$ is hard for a class C (C-hard) iff all languages of this class reduce to it.
$\rightarrow L$ is complete for C (C-complete) iff it is hard and $L \in C$.

NP-complete Problems

- A problem is NP-complete iff it is NP-hard and in NP.
- Example: SAT - the satisfiability problem for propositional logic is NP-complete (Cook/Karp)
\rightarrow Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

The Complexity Class co-NP

- Note that there is some asymmetry in the definition of NP.
- It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
\rightsquigarrow There exists an accepting computation of polynomial length iff the formula is satisfiable
- What if we want to solve UNSAT, the complementary problem?
\rightsquigarrow It seems necessary to check all possible truth-assignments!
- Define co- $C=\left\{L \mid \Sigma^{*}-L \in C\right\}$, provided Σ is our alphabet
$\rightsquigarrow c o-N P=\left\{L \mid \Sigma^{*}-L \in N P\right\}$
- For example UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, i.e.,

$$
P \in N P \cap c o-N P
$$

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomial many tape cells.
Some facts about PSPACE:

- PSPACE is closed under complements (as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP \subseteq PSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NP \subseteq NPSPACE)
- It is unknown whether $N P \neq P S P A C E$, but it is believed that this is true.

PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is PSPACE-complete, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.
Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than NP-complete problems from a practical point of view.
An example for a PSPACE-complete problem is the
NDFA equivalence problem:
Instance: Two non-deterministic finite state automata A_{1} and A_{2}.
Question: Are the languages accepted by A_{1} and A_{2} identical?

Other Complexity Classes ...

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME, ...),
- there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- there are (infinitely many) classes inside P (circuit classes with different depths)
\rightarrow and for most of the classes we do not know whether the containment relationships are strict

Oracle Turing Machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle, another Turing machine without resource restrictions, whether it accepts or reject a given string.
\rightarrow Computation by the oracle does not cost anything!
- Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
\rightsquigarrow Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Turing Reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L_{1} is Turing-reduced to L_{2}, symbolically $L_{1} \leq_{T} L_{2}$ if there exists an OTM that decides L_{1} by using an oracle for L_{2}.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
\rightsquigarrow NP-completeness and co-NP-completeness with respect to Turing reducibility are identical!
\rightarrow Turing reducibility can also be applied to general search problems!

Complexity Classes Based on Oracle TMs

1. $P^{N P}=$ decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2. $N P^{N P}=$ decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
3. co-NP ${ }^{N P}=$ complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
4. $N P^{N P}=\ldots$
and so on

Example

- Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.
Question: Is there a well-formed Boolean formula ϕ^{\prime} that contains K or fewer literal occurrences and that is logical equivalent to ϕ ?

- This problem is NP-hard (writ. to Turing reductions).
- It does not appear to be NP-complete
- We could guess a formula and then use a SAT-oracle
$\rightsquigarrow M M E \in N P^{N P}$.

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy. The polynomial hierarchy PH

$$
\begin{aligned}
\Sigma_{0}^{p} & =P & \Pi_{0}^{p} & =P & \Delta_{0}^{p} & =P \\
\Sigma_{i+1}^{p} & =\mathrm{NP}^{\Sigma_{i}^{p}} & \Pi_{i+1}^{p} & =\operatorname{co}-\Sigma_{i+1}^{p} & \Delta_{i+1}^{p} & =P^{\Sigma_{i}^{p}}
\end{aligned}
$$

- $\mathrm{PH}=\bigcup_{i \geq 0}\left(\Sigma_{i}^{p} \cup \Pi_{i}^{p} \cup \Delta_{i}^{p}\right) \subseteq$ PSPACE
- $\mathrm{NP}=\Sigma_{1}^{p}, \mathrm{co}-\mathrm{NP}=\Pi_{1}^{p}$

Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.
- A formula $\exists x \phi$ is true if and only if $\phi[\top / x] \vee \phi[\perp / x]$ is true. (Equivalently, $\phi[\mathrm{T} / x]$ is true or $\phi[\perp / x]$ is true.)
- A formula $\forall x \phi$ is true if and only if $\phi[\top / x] \wedge \phi[\perp / x]$ is true. (Equivalently, $\phi[\top / x]$ is true and $\phi[\perp / x]$ is true.)
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.
The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y(x \leftrightarrow y)$ and $\exists x \exists y(x \wedge y)$ are true.
Example
The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\overbrace{\exists \exists \forall \cdots}$ is Π_{i}^{p}-complete.
Truth of QBFs with prefix $\overbrace{\exists \exists \exists \cdots}$ is Σ_{i}^{p}-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_{1}^{1} \cdots x_{n}^{1}$ is NP= \sum_{1}^{p}-complete. The truth of QBFs with prefix $\forall x_{1}^{1} \cdots x_{n}^{1}$ is co- $\mathrm{NP}=\Pi_{1}^{p}$-complete.

Literature

M. R. Garey and D. S. Johnson.

Computers and Intractability - A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.
固
C. H. Papadimitriou. Computational Complexity. Addison-Wesley,Reading, MA, 1994.

