Complexity Theory

Knowledge Representation and Reasoning

November 2, 2005

(Knowledge Representation and Reasoning)

Complexity Theory

Outline Motivation

Reminder: Basic Notions

Algorithms and Turing Machines Problems, Solutions, and Complexity Complexity Classes P and NP Upper and Lower Bounds Polynomial Reductions NP-Completeness

Beyond NP

The Class co-NP The Class PSPACE Other Classes

Oracle TMs and the Polynomial Hierarchy

Oracle Turing-Machines Turing Reduction Complexity Classes Based on OTMs QBF

(Knowledge Representation and Reasoning)

Complexity Theory

Motivation

Motivation for Using Complexity Theory

- Complexity theory can answer us questions how easy or hard a problem is
- ---> Gives hints on what appropriate algorithms could be,e.g.,
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- → Gives us hint on what type of algorithms will (most probably) not work
 - for problem that are believed to be harder than NP-complete ones, simple backtracking will not work
- → Gives hint on what sub-problem might be interesting

Algorithms and Turing Machines

- We use Turing machines as formal models of algorithms
- This is justified, because
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM or simply TM
- Often, however, we use the notion of nondeterministic TMs: NDTM

Problems, Solutions, and Complexity

- A problem is a set of pairs (I, A) of strings in $\{0, 1\}^*$.
 - I: Instance
 - A: Answer. If $A \in \{0, 1\}$: decision problem
- → A decision problem is the same as a *formal language* (namely the set of strings formed by the instances with answer 1)
 - An algorithm decides (or solves) a problem if it computes the right answer for all instances.
 - The complexity of an algorithm is a function

 $T\colon \mathbf{N}\to \mathbf{N},$

measuring the *number of basic steps* (or memory requirement) the algorithm needs to compute an answer depending on the *size* of the instance.

The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.

(Knowledge Representation and Reasoning)

Complexity Theory

Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- \rightarrow Problems in **P** are said to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
 - The class of problems decidable on nondeterministic Turing machines in polynomial time: NP
 - More classes are definable using other resource bounds on time and memory.

Upper and Lower Bounds

► Upper bounds (*membership* in a class) are usually easy to prove:

- → provide an algorithm
- → show that the resource bounds are respected.

► Lower bounds (*hardness* for a class) are usually difficult to show.

- whe technical tool here is the polynomial reduction (or any other appropriate reduction).
- show that some hard problem can be reduced to the problem at hand

Polynomial Reductions

► Given two languages L₁ and L₂, L₁ can be *polynomially reduced* to L₂, written L₁ ≤_p L₂, iff there exists a polynomially computable function f such that

$$x \in L_1$$
 iff $f(x) \in L_2$

- \rightarrow It cannot be harder to decide L_1 than L_2
- $\rightarrow L$ is hard for a class C (C-hard) iff all languages of this class reduce to it.
- \rightarrow L is complete for C (C-complete) iff it is hard and $L \in C$.

NP-complete Problems

- A problem is **NP-complete** iff it is **NP-hard** and in NP.
- Example: SAT the satisfiability problem for propositional logic is NP-complete (Cook/Karp)
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae

The Complexity Class co-NP

- Note that there is some asymmetry in the definition of NP.
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve UNSAT, the complementary problem?
 - → It seems necessary to check *all* possible truth-assignments!
- ► Define co- $C = \{L | \Sigma^* L \in C\}$, provided Σ is our alphabet

$$\rightsquigarrow$$
 co-NP = { $L|\Sigma^* - L \in \mathsf{NP}$ }

- For example UNSAT, TAUT \in co-NP!
- Note: P is closed under complement, i.e.,

$\mathsf{P} \in \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP}$

(Knowledge Representation and Reasoning)

PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on **deterministic** (non-deterministic) Turing machines using only polynomial many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NPCPSPACE (because in polynomial time one can "visit" only polynomial space, i.e., NPCNPSPACE)
- It is unknown whether NP≠PSPACE, but it is believed that this is true.

(Knowledge Representation and Reasoning)

PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is **PSPACE-complete**, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the "hardest" problems in PSPACE (similar to NP-completeness). They appear to be "harder" than **NP-complete** problems from a *practical point of view*. An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2 . **Question**: Are the languages accepted by A_1 and A_2 identical?

Other Complexity Classes

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME, ...),
- there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- there are (infinitely many) classes inside P (circuit classes with different depths)
- $\rightarrow\,$ and for most of the classes we do not know whether the containment relationships are strict

Oracle Turing Machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle, another Turing machine without resource restrictions, whether it accepts or reject a given string.
- \rightarrow Computation by the oracle does not cost anything!
 - Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Turing Reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- L₁ is Turing-reduced to L₂, symbolically L₁ ≤_T L₂ if there exists an OTM that decides L₁ by using an oracle for L₂.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-completeness and co-NP-completeness with respect to Turing reducibility are identical!
- \rightarrow Turing reducibility can also be applied to general search problems!

Complexity Classes Based on Oracle TMs

- 1. P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
- 2. NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
- co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
 NP^{NP^{NP}} = ...

and so on

Example

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer *K*. **Question**: Is there a well-formed Boolean formula ϕ' that contains *K* or fewer literal occurrences and that is logical equivalent to ϕ ?

- This problem is NP-hard (writ. to Turing reductions).
- It does not appear to be NP-complete
- ▶ We could guess a formula and then use a SAT-oracle \rightsquigarrow MME \in NP^{NP}.

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy. The polynomial hierarchy PH

►
$$PH = \bigcup_{i \ge 0} (\Sigma_i^p \cup \Pi_i^p \cup \Delta_i^p) \subseteq PSPACE$$

► $NP = \Sigma_1^p, \text{ co-}NP = \Pi_1^p$

Quantified Boolean Formulae: Definition

- \triangleright If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma\phi$ is a QBF.
- A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\perp/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\perp/x]$ is true.)
- ▶ A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\perp/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\perp/x]$ is true.)
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are respectively NP-complete and co-NP-complete whereas the former is **PSPACE-complete**.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.

The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix
$$\overbrace{\forall \exists \forall \cdots}^{i}$$
 is Π_{i}^{p} -complete.
Truth of QBFs with prefix $\exists \forall \exists \cdots$ is Σ_{i}^{p} -complete.

Special cases corresponding to SAT and TAUT: The truth of QBFs with prefix $\exists x_1^1 \cdots x_n^1$ is NP= Σ_1^p -complete. The truth of QBFs with prefix $\forall x_1^1 \cdots x_n^1$ is co-NP= \prod_{1}^{p} -complete. Literature

Literature

M. R. Garey and D. S. Johnson.

Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman and Company, San Francisco, 1979.

C. H. Papadimitriou.

Computational Complexity.

Addison-Wesley, Reading, MA, 1994.