Classical Logic Predicate Logic

Knowledge Representation and Reasoning

October 31, 2005

Outline

Motivation

Syntax

Semantics

Interpretations Variable maps Definition of truth Terminology Free and bound variables Open and Closed Formulae

Literature

Motivation

Why First-Order Logic (FOL)?

- In propositional logic, the only building blocks are atomic propositions.
- We cannot talk about the internal structures of these propositions.
- Example:
 - All CS students know formal logic
 - Peter is a CS student
 - ► Therefore, *Peter knows formal logic*
 - Not possible in propositional logic
- Idea: We introduce predicates, functions, object variables and quantifiers.

Syntax

- \blacktriangleright variable symbols: x, y, z, \dots
- \blacktriangleright *n*-ary function symbols: f, g, \ldots
- \blacktriangleright constant symbols: a, b, c, \dots
- \blacktriangleright *n*-ary predicate symbols: *P*,*Q*,...
- ▶ logical symbols: \forall , \exists , =, \neg , \land , ...

Terms $t \longrightarrow x$ variable $f(t_1, \ldots, t_n)$ function application a constant

Formulae φ $\longrightarrow P(t_1, \ldots, t_n)$ atomic formula|t = t'identity formulae| \ldots propositional connectives| $\forall x(\varphi')$ universal quantification $\exists x(\varphi')$ existential quantification

ground term, etc.: term, etc. without variable occurrences

Semantics: Idea

- In FOL, the universe of discourse consists of objects, functions over these objects, and relations over these objects.
- Function symbols are mapped to functions, predicate symbols are mapped to relations, and terms to objects.
- ▶ Notation: Instead of I(x) we write x^{I} .
- Note: Usually one considers all possible non-empty universes. (However, sometimes the interpretations are restricted to particular domains, e.g. integers or real numbers.)
- Satisfiability and validity is then considered wrt all these universes.

Formal Semantics: Interpretations

Interpretations: $I = \langle \mathcal{D}, \cdot^I \rangle$ with \mathcal{D} being an arbitrary non-empty set and I being a function which maps

- ▶ *n*-ary function symbols *f* to *n*-ary functions $f^{I} \in [\mathcal{D}^{n} \to \mathcal{D}]$,
- constant symbols a to objects $a^I \in \mathcal{D}$, and
- ▶ *n*-ary predicates *P* to *n*-ary relations $P^{I} \subseteq \mathcal{D}^{n}$.

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^I = f^I(t_1^I,\ldots,t_n^I) (\in \mathcal{D})$$

Truth of ground atoms:

$$I \models P(t_1, \ldots, t_n) \quad \text{iff} \quad \langle t_1^I, \ldots, t_n^I \rangle \in P^I$$

Examples

$$\mathcal{D} = \{d_1, \dots, d_n\}, n \ge 2 \qquad \mathcal{D} = \{1, 2, 3, \dots\}$$

$$a^I = d_1 \qquad 1^I = 1$$

$$b^I = d_2 \qquad 2^I = 2$$

$$eye^I = \{d_1\} \qquad \vdots$$

$$red^I = \mathcal{D} \qquad even^I = \{2, 4, 6, \dots\}$$

$$I \models red(b) \qquad succ^I = \{(1 \mapsto 2), (2 \mapsto 3), \dots\}$$

$$I \not\models eye(b) \qquad I \not\models even(3)$$

$$I \models even(succ(3))$$

Formal Semantics: Variable Maps

V is the set of variables. Function $\alpha \colon V \to \mathcal{D}$ is a variable map. Notation: $\alpha[x/d]$ is identical to α except for *x* where $\alpha[x/d](x) = d$. Interpretation of terms under *I*, α :

$$x^{I,\alpha} = \alpha(x)$$

$$a^{I,\alpha} = a^{I}$$

$$(f(t_1,\ldots,t_n))^{I,\alpha} = f^{I}(t_1^{I,\alpha},\ldots,t_n^{I,\alpha})$$

Truth of atomic formulae:

$$I, \alpha \models P(t_1, \ldots, t_n) \quad \text{iff} \quad \langle t_1^{I, \alpha}, \ldots, t_n^{I, \alpha} \rangle \in P^I$$

Example (cont.):

$$\alpha = \{ x \mapsto d_1, y \mapsto d_2 \} \qquad I, \alpha \models \operatorname{red}(x) \qquad I, \alpha[y/d_1] \models \operatorname{eye}(y)$$

Formal Semantics: Truth

Truth of φ by *I* under α ($I, \alpha \models \varphi$) is defined as follows.

$$I, \alpha \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{I, \alpha}, \dots, t_n^{I, \alpha} \rangle \in P^I$$

$$I, \alpha \models t_1 = t_2 \quad \text{iff} \quad t_1^{I, \alpha} = t_2^{I, \alpha}$$

$$I, \alpha \models \neg \phi \quad \text{iff} \quad I, \alpha \not\models \phi$$

$$I, \alpha \models \phi \land \psi \quad \text{iff} \quad I, \alpha \models \phi \text{ and } I, \alpha \models \psi$$

$$I, \alpha \models \phi \lor \psi \quad \text{iff} \quad I, \alpha \models \phi \text{ or } I, \alpha \models \psi$$

$$I, \alpha \models \phi \rightarrow \psi \quad \text{iff} \quad I, \alpha \models \phi, \text{ then } I, \alpha \models \psi$$

$$I, \alpha \models \phi \leftrightarrow \psi \quad \text{iff} \quad I, \alpha \models \phi, \text{ iff } I, \alpha \models \psi$$

$$I, \alpha \models \forall x \phi \quad \text{iff} \quad I, \alpha[x/d] \models \phi \text{ for all } d \in \mathcal{D}$$

$$I, \alpha \models \exists x \phi \quad \text{iff} \quad I, \alpha[x/d] \models \phi \text{ for some } d \in \mathcal{D}$$

Examples

$$\Theta = \begin{cases} eye(a), eye(b) \\ \forall x(eye(x) \rightarrow red(x)) \end{cases}$$

$$\mathcal{D} = \{d_1, \dots, d_n, \} \ n > 1$$

$$a^I = d_1$$

$$b^I = d_1$$

$$eye^I = \{d_1\}$$

$$red^I = \mathcal{D}$$

$$\alpha = \{(x \mapsto d_1), (y \mapsto d_2)\}$$

Questions:

$$I, \alpha \models eye(b) \lor \neg eye(b)?$$
 Yes

$$I, \alpha \models eye(x) \rightarrow$$

$$eye(x) \lor eye(y)?$$
 Yes

$$I, \alpha \models eye(x) \rightarrow eye(y)?$$
 No

$$I, \alpha \models eye(a) \land eye(b)?$$
 Yes

$$I, \alpha \models \forall x(eye(x) \rightarrow red(x))?$$
 Yes

$$I, \alpha \models \Theta$$
? Yes

Terminology

 $\mathit{I}, \alpha \text{ is a model of } \phi \text{ iff}$

$$I, \alpha \models \varphi.$$

A formula can be satisfiable, unsatisfiable, falsifiable, valid. Two formulae φ and ψ are logically equivalent ($\varphi \equiv \psi$) iff for all I, α :

$$I, \alpha \models \varphi \text{ iff } I, \alpha \models \psi.$$

Note: $P(x) \neq P(y)!$ Logical Implication is also similar to propositional logic:

$$\Theta \models \phi$$
 iff for all *I*, α s.t. *I*, $\alpha \models \Theta$ also *I*, $\alpha \models \phi$.

Free and Bound Variables

Variables can be free or bound (by a quantifier) in a formula:

$$\begin{aligned} & \operatorname{free}(x) &= \{x\} \\ & \operatorname{free}(f(t_1, \dots, t_n)) &= \operatorname{free}(t_1) \cup \dots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(t_1 = t_2) &= \operatorname{free}(t_1) \cup \operatorname{free}(t_2) \\ & \operatorname{free}(P(t_1, \dots, t_n)) &= \operatorname{free}(t_1) \cup \dots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(\neg \varphi) &= \operatorname{free}(\varphi) \\ & \operatorname{free}(\varphi * \psi) &= \operatorname{free}(\varphi) \cup \operatorname{free}(\psi) * = \lor, \land, \rightarrow, \leftrightarrow \\ & \operatorname{free}(\Xi x \varphi) &= \operatorname{free}(\varphi) - \{x\} \Xi = \forall, \exists \end{aligned}$$

Example: $\forall x \ (R(y,z) \land \exists y \ (\neg P(y,x) \lor R(y,z)))$ Framed occurrences are free, all others are bound.

(Knowledge Representation and Reasoning)

Open & Closed Formulae

- Formulae without free variables are called closed formulae or sentences. Formulae with free variables are called open formulae.
- Closed formulae are all we need when we want to state something about the world. Open formulae (and variable maps) are only necessary for technical reasons (semantics of ∀ and ∃).
- Note that *logical equivalence*, *satisfiability*, and entailment are independent from variable maps if we consider only closed formulae.
- For closed formulae, we omit α in connection with \models :

$$I \models \varphi.$$

Important Theorems

Theorem (Compactness)

Let $\Phi \cup \{\psi\}$ be a set of closed formulae.

- (a) $\Phi \models \psi$ iff there exists a finite subset $\Phi' \subset \Phi$ s. t. $\Phi' \models \psi$.
- (b) Φ is satisfiable iff each finite subset $\Phi' \subset \Phi$ is satisfiable.

Theorem (Löwenheim-Skolem)

Each countable set of closed formuale that is satisfiable is satisfiable on a countable domain.

Literature

Literature

 Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, NJ, 1981 (Chapters 8 & 9).
 Volker Sperschneider and Grigorios Antoniou. Logic – A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1991 (Chapters 1–3).
 H.-P. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
 U. Schöning.

Logik für Informatiker. Spektrum-Verlag.