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Motivation

Why First-Order Logic (FOL)?

◮ In propositional logic, the only building blocks are atomic propositions.

◮ We cannot talk about the internal structures of these propositions.
◮ Example:

◮ All CS students know formal logic
◮ Peter is a CS student
◮ Therefore, Peter knows formal logic
◮ Not possible in propositional logic

◮ Idea: We introduce predicates, functions, object variables and quantifiers.
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Syntax

Syntax

◮ variable symbols: x,y,z, . . .
◮ n-ary function symbols: f ,g, . . .
◮ constant symbols: a,b,c, . . .
◮ n-ary predicate symbols: P,Q, . . .
◮ logical symbols: ∀, ∃, =, ¬, ∧, . . .

Terms t −→ x variable
| f (t1, . . . , tn) function application
| a constant

Formulae ϕ −→ P(t1, . . . , tn) atomic formula
| t = t ′ identity formulae
| . . . propositional connectives
| ∀x(ϕ′) universal quantification
| ∃x(ϕ′) existential quantification

ground term, etc.: term, etc. without variable occurrences
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Semantics

Semantics: Idea

◮ In FOL, the universe of discourse consists of objects, functions over these
objects, and relations over these objects.

◮ Function symbols are mapped to functions, predicate symbols are
mapped to relations, and terms to objects.

◮ Notation: Instead of I (x) we write xI .

◮ Note: Usually one considers all possible non-empty universes. (However,
sometimes the interpretations are restricted to particular domains, e.g.
integers or real numbers.)

◮ Satisfiability and validity is then considered wrt all these universes.
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Semantics Interpretations

Formal Semantics: Interpretations

Interpretations: I = 〈D , ·I 〉 with D being an arbitrary non-empty set and I
being a function which maps

◮ n-ary function symbols f to n-ary functions f I ∈ [D n → D ],

◮ constant symbols a to objects aI ∈ D , and

◮ n-ary predicates P to n-ary relations PI ⊆ D n.

Interpretation of ground terms:

( f (t1, . . . , tn))
I = f I (t1

I , . . . , tn
I ) (∈ D )

Truth of ground atoms:

I |= P(t1, . . . , tn) iff 〈t1
I , . . . , tn

I 〉 ∈ PI
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Semantics Interpretations

Examples

D = {d1, . . . ,dn},n ≥ 2

aI = d1

bI = d2

eyeI = {d1}

redI = D

I |= red(b)

I 6|= eye(b)

D = {1,2,3, . . .}

1I = 1

2I = 2
...

evenI = {2,4,6, . . .}

succI = {(1 7→ 2),(2 7→ 3), . . .}

I 6|= even(3)

I |= even(succ(3))
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Semantics Variable maps

Formal Semantics: Variable Maps

V is the set of variables. Function α : V → D is a variable map.
Notation: α[x/d] is identical to α except for x where α[x/d](x) = d.
Interpretation of terms under I ,α:

xI ,α = α(x)

aI ,α = aI

( f (t1, . . . , tn))
I ,α = f I (t1

I ,α, . . . , tn
I ,α)

Truth of atomic formulae:

I ,α |= P(t1, . . . , tn) iff 〈t1
I ,α, . . . , tn

I ,α〉 ∈ PI

Example (cont.):

α = {x 7→ d1,y 7→ d2} I ,α |= red(x) I ,α[y/d1] |= eye(y)
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Semantics Definition of truth

Formal Semantics: Truth

Truth of ϕ by I under α (I ,α |= ϕ) is defined as follows.

I ,α |= P(t1, . . . , tn) iff 〈t1
I ,α, . . . , tn

I ,α〉 ∈ PI

I ,α |= t1 = t2 iff t1
I ,α = t2

I ,α

I ,α |= ¬ϕ iff I ,α 6|= ϕ
I ,α |= ϕ∧ψ iff I ,α |= ϕ and I ,α |= ψ
I ,α |= ϕ∨ψ iff I ,α |= ϕ or I ,α |= ψ
I ,α |= ϕ→ψ iff if I ,α |= ϕ, then I ,α |= ψ
I ,α |= ϕ ↔ ψ iff I ,α |= ϕ, iff I ,α |= ψ
I ,α |= ∀x ϕ iff I ,α[x/d] |= ϕ for all d ∈ D

I ,α |= ∃x ϕ iff I ,α[x/d] |= ϕ for some d ∈ D
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Semantics Definition of truth

Examples

Θ =

{

eye(a),eye(b)
∀x(eye(x) → red(x))

}

D = {d1, . . . ,dn,} n > 1

aI = d1

bI = d1

eyeI = {d1}

redI = D

α = {(x 7→ d1),(y 7→ d2)}

Questions:

I ,α |= eye(b)∨¬eye(b)? Yes

I ,α |= eye(x) →
eye(x)∨eye(y)? Yes

I ,α |= eye(x) → eye(y)? No

I ,α |= eye(a)∧eye(b)? Yes

I ,α |= ∀x(eye(x) → red(x))?
Yes

I ,α |= Θ? Yes
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Semantics Terminology

Terminology

I ,α is a model of ϕ iff
I ,α |= ϕ.

A formula can be satisfiable, unsatisfiable, falsifiable, valid.
Two formulae ϕ and ψ are logically equivalent (ϕ ≡ ψ) iff for all I ,α:

I ,α |= ϕ iff I ,α |= ψ.

Note: P(x) 6≡ P(y)!
Logical Implication is also similar to propositional logic:

Θ |= ϕ iff for all I ,α s.t. I ,α |= Θ also I ,α |= ϕ.
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Semantics Free and bound variables

Free and Bound Variables

Variables can be free or bound (by a quantifier) in a formula:

free(x) = {x}

free( f (t1, . . . , tn)) = free(t1)∪ . . .∪ free(tn)

free(t1 = t2) = free(t1)∪ free(t2)

free(P(t1, . . . , tn)) = free(t1)∪ . . .∪ free(tn)

free(¬ϕ) = free(ϕ)

free(ϕ∗ψ) = free(ϕ)∪ free(ψ) ∗ = ∨,∧,→,↔

free(Ξxϕ) = free(ϕ)−{x} Ξ = ∀,∃

Example: ∀x (R( y , z ) ∧ ∃ y (¬P(y,x) ∨ R(y, z )))
Framed occurrences are free, all others are bound.
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Semantics Open and Closed Formulae

Open & Closed Formulae

◮ Formulae without free variables are called closed formulae or sentences.
Formulae with free variables are called open formulae.

◮ Closed formulae are all we need when we want to state something about
the world. Open formulae (and variable maps) are only necessary for
technical reasons (semantics of ∀ and ∃).

◮ Note that logical equivalence, satisfiability, and entailment are
independent from variable maps if we consider only closed formulae.

◮ For closed formulae, we omit α in connection with |=:

I |= ϕ.
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Semantics Open and Closed Formulae

Important Theorems

Theorem (Compactness)
Let Φ∪{ψ} be a set of closed formulae.

(a) Φ |= ψ iff there exists a finite subset Φ′ ⊂ Φ s. t. Φ′ |= ψ.

(b) Φ is satisfiable iff each finite subset Φ′ ⊂ Φ is satisfiable.

Theorem (Löwenheim-Skolem)
Each countable set of closed formuale that is satisfiable is satisfiable on a
countable domain.
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