Classical Logic Propositional Logic

Knowledge Representation and Reasoning

October 24, 2005

Outline

Propositional Logic

Syntax

Semantics

Terminology

Normal forms

Decision Problems

Resolution

Derivations

Completeness

Resolution strategies

Horn clauses

Why Logic?

- Logic is one of the best developed system for representing knowledge.
- Can be used for analysis, design and specification.
- Understanding formal logic is a prerequisite for understanding most research papers in KRR.

The Right Logic

- ► Logics of different orders (1st, 2nd, ...)
- Modal logics
 - epistemic
 - temporal
 - dynamic (program)
 - multi-
- Many-valued logics
- Conditional logics
- Nonmonotonic logics
- Linear logics

The Logical Approach

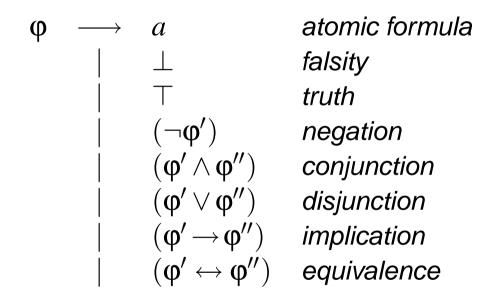
- Define a formal language
- logical & non-logical symbols, syntax rules
- Provide language with compositional semantics
 - Fix universe of discourse
 - Specify how the non-logical symbols can be interpreted
 - interpretation
 - Rules how to combine interpretation of single symbols
 - Satisfying interpretation = model
 - From that logical implication/entailment follows
- Specify a calculus that allows to derive new formulae from old ones according to the entailment relation

Propositional Logic: Main Ideas

- Non-logical symbols: propositional variables or atoms
 - representing propositions which cannot be decomposed
 - which can be true or false
 - for example:
 - "Snow is white"
 - "It rains"
- Logical Symbols: propositional connectives such as and (∧), or (∨), and not (¬).
- Formulae: built out of atoms and connectives
- Universe of discourse: truth values

Syntax

Countable alphabet Σ of atomic propositions: a, b, c, \ldots Propositional formulae are built according to the following rule:



Parenthesis can be omitted if no ambiguity arises.

Operator precedence: $\neg > \land > \lor > \rightarrow = \leftrightarrow$.

Semantics: Idea

- ightharpoonup Atomic propositions can be true (1,T) or false (0,F).
- Provided the truth values of the atoms have been fixed (truth assignment or interpretation), the truth value of a formula can be computed from the truth values of the atoms and the connectives.
- Example:

$$(a \lor b) \land c$$

is true iff c is true and additionally a or b is true.

- Logical implication can then be defined as follows:
- ightharpoonup φ is implied by the formulae Θ iff φ is true for all truth assignments (world states) that make all formulae in Θ true.

Formal Semantics

An interpretation or truth assignment over Σ is a function: $I: \Sigma \to \{T, F\}$. A formula ψ is true under I or is satisfied by I (symbolically $I \models \psi$):

$$I \models a$$
 iff $I(a) = T$

$$I \models \top$$

$$I \not\models \bot$$

$$I \models \neg \varphi$$
 iff $I \not\models \varphi$

$$I \models \varphi \land \varphi'$$
 iff $I \models \varphi \text{ and } I \models \varphi'$

$$I \models \varphi \lor \varphi'$$
 iff $I \models \varphi \text{ or } I \models \varphi'$

$$I \models \varphi \rightarrow \varphi'$$
 iff if $I \models \varphi$, then $I \models \varphi'$

$$I \models \varphi \leftrightarrow \varphi'$$
 iff $I \models \varphi$ if and only if $I \models \varphi'$

Example

Given

$$I: a \mapsto T, \ b \mapsto F, \ c \mapsto F, \ d \mapsto T,$$

Is
$$((a \lor b) \leftrightarrow (c \lor d)) \land (\neg(a \land c) \lor (c \land \neg d))$$
 true or false?

$$((\mathbf{a} \lor \mathbf{b}) \leftrightarrow (\mathbf{c} \lor \mathbf{d})) \land (\neg(\mathbf{a} \land \mathbf{c}) \lor (\mathbf{c} \land \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg (\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

$$((\mathbf{a} \vee \mathbf{b}) \leftrightarrow (\mathbf{c} \vee \mathbf{d})) \wedge (\neg(\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{c} \wedge \neg \mathbf{d}))$$

Terminology

An interpretation I is a model of φ iff

$$I \models \varphi$$

A formula φ is

- **satisfiable** iff there is *I* such that $I \models \varphi$,
- unsatisfiable otherwise, and
- ightharpoonup valid iff $I \models \varphi$ for all I,
- falsifiable otherwise.

Two formulae ϕ and ψ are logically equivalent (symbolically $\phi \equiv \psi$) iff for all interpretations $\it I$

$$I \models \varphi \text{ iff } I \models \psi.$$

Examples

Satisfiable, unsatisfiable, falsifiable, valid?

$$(a \lor b \lor \neg c) \land (\neg a \lor \neg b \lor d) \land (\neg a \lor b \lor \neg d)$$

- \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto F, d \mapsto F, \dots$
- \rightsquigarrow falsifiable: $a \mapsto F, b \mapsto F, c \mapsto T, \dots$

$$((\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a))$$

- \rightsquigarrow satisfiable: $a \mapsto T, b \mapsto T$
- → valid: Consider all interpretations or argue about falsifying ones.

Equivalence?

$$\neg(a \lor b) \equiv \neg a \land \neg b$$

→ Of course, equivalent (de Morgan).

Some Obvious Consequences

Proposition

 ϕ is valid iff $\neg \phi$ is unsatisfiable and ϕ is satisfiable iff $\neg \phi$ is falsifiable.

Proposition

 $\phi \equiv \psi \text{ iff } \phi \leftrightarrow \psi \text{ is valid.}$

Theorem

If $\varphi \equiv \psi$ and χ' results from substituting φ by ψ in χ , then $\chi' \equiv \chi$.

Some Equivalences

simplifications	$\phi \longrightarrow \psi$	=	$\neg\phi\vee\psi$	$\phi \leftrightarrow \psi$	=	$(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$
idempotency	$\phi \vee \phi$	=	φ	$\phi \wedge \phi$	\equiv	φ
commutativity	$\phi \vee \psi$	=	$\psi \lor \phi$	$\phi \wedge \psi$	\equiv	$\psi \wedge \phi$
associativity	$(\phi \vee \psi) \vee \chi$	=	$\phi \vee (\psi \vee \chi)$	$(\phi \wedge \psi) \wedge \chi$	\equiv	$\phi \wedge (\psi \wedge \chi)$
absorption	$\phi \vee (\phi \wedge \psi)$	=	φ	$\phi \wedge (\phi \vee \psi)$	\equiv	φ
distributivity	$\phi \wedge (\psi \vee \chi)$	\equiv	$\vee (\phi \wedge \psi) \vee$	$\phi \vee (\psi \wedge \chi)$	\equiv	$(\phi \vee \psi) \wedge$
			$(\phi \wedge \chi)$			$(\phi \lor \chi)$
double negation	$\neg \neg \phi$	=	φ			
constants	$\neg \top$	\equiv	\perp	$\neg \bot$	\equiv	Τ
De Morgan	$\neg(\phi\vee\psi)$	\equiv	$\neg \phi \wedge \neg \psi$	$\neg(\phi \land \psi)$	\equiv	$\neg\phi \vee \neg\psi$
truth	$\phi \vee \top$	\equiv	T	$\phi \wedge \top$	\equiv	φ
falsity	$\phi \lor \bot$	=	φ	$\phi \wedge \bot$	=	\perp

How Many Different Formulae Are There

- ... for a given *finite* alphabet Σ ?
 - ▶ Infinitely many: $a, a \lor a, a \land a, a \lor a \lor a, \ldots$
 - How many different logically distinguishable (non-equivalent) formulae?
 - For Σ with $n = |\Sigma|$, there are 2^n different interpretations.
 - A formula can be characterized by its set of models
 (if two formulae are logically non-equivalent then their sets of models differ).
 - ▶ There are $2^{(2^n)}$ different sets of interpretations.
 - ▶ There are $2^{(2^n)}$ logical equivalence classes of formulae.

Logical Implication

ightharpoonup Extension of the relation \models to sets Θ of formulae:

$$I \models \Theta \text{ iff } I \models \varphi \text{ for all } \varphi \in \Theta.$$

ho is logically implied by Θ (symbolically $\Theta \models \varphi$) iff φ is true in all models of Θ :

$$\Theta \models \varphi$$
 iff $I \models \varphi$ for all I such that $I \models \Theta$

- Some consequences:
 - ▶ Deduction theorem: $\Theta \cup \{\phi\} \models \psi$ iff $\Theta \models \phi \rightarrow \psi$
 - ▶ Contraposition: $\Theta \cup \{\phi\} \models \neg \psi \text{ iff } \Theta \cup \{\psi\} \models \neg \phi$
 - ▶ Contradiction: $\Theta \cup \{\phi\}$ is unsatisfiable iff $\Theta \models \neg \phi$

Normal Forms

Terminology:

- ▶ Atomic formulae a, negated atomic formulae $\neg a$, truth \top and falsity \bot are literals.
- A disjunction of literals is a clause.
- If ¬ only occurs in front of an atom and there are no occurrences of → and ↔, the formula is in negation normal form (NNF).

Example: $(\neg a \lor \neg b) \land c$, but not: $\neg (a \land b) \land c$

- A conjunction of clauses is in conjunctive normal form (CNF). Example: $(a \lor b) \land (\neg a \lor c)$
- The dual form (disjunction of conjunctions of literals) is in disjunctive normal form (DNF).

Example: $(a \land b) \lor (\neg a \land c)$

Negation Normal Form

Theorem

For each propositional formula there is a logically equivalent formula in NNF.

Proof.

First eliminate \rightarrow and \leftrightarrow by the appropriate equivalences. The rest of the proof is by structural induction.

Base case: Claim is true for a, $\neg a$, \top , \bot .

Inductive case: Assume claim is true for all formulae φ (up to a certain number of connectives) and call its NNF $nnf(\varphi)$.

Conjunctive Normal Form

Theorem

For each propositional formula there is a logically equivalent formula in CNF. A similar argument works for DNF!

- ▶ True for a, $\neg a$, \top , \bot .
- Let us assume it is true for all formulae φ (up to a certain number of connectives) and call its CNF $cnf(\varphi)$.
 - $\qquad \mathsf{cnf}(\neg \varphi) = \mathsf{cnf}(\mathsf{nnf}(\neg \varphi))$
 - $\mathsf{cnf}(\phi \wedge \psi) = \mathsf{cnf}(\phi) \wedge \mathsf{cnf}(\psi)$
 - Assume $cnf(\phi) = \bigwedge_i \chi_i$ and $cnf(\psi) = \bigwedge_j \rho_j$ with χ_i, ρ_j being clauses. Then

$$\operatorname{cnf}(\varphi \vee \psi) = \operatorname{cnf}((\bigwedge_{i} \chi_{i}) \vee (\bigwedge_{j} \rho_{j}))$$

$$= \bigwedge_{i} \bigwedge_{j} (\chi_{i} \vee \rho_{j})$$
 (by distributivity)

How to Decide Properties of Formulae

How do we decide whether a formula is satisfiable, unsatisfiable, valid, or falsifiable?

Note: Satisfiability and falsifiability are NP-complete. Validity and unsatisfiability are co-NP-complete.

- A CNF formula is valid iff all clauses contain two complementary literals or ⊤.
- ▶ A DNF formula is satisfiable iff one disjunct does not contain \bot or two complementary literals.
- However, transformation to CNF or DNF may take exponential time (and space!).
- One can try out all truth assignments.
- One can test systematically for satisfying truth assignments (backtracking search) → Davis-Putnam procedure (DP)

Deciding Entailment

- We want to decide $\Theta \models \varphi$.
- Use deduction theorem and reduce to validity:

$$\Theta \models \varphi \text{ iff } \bigwedge \Theta \rightarrow \varphi \text{ is valid.}$$

- Now negate and test for unsatisfiability using DP.
- ▶ Different approach: Try to derive φ from Θ find a proof of φ from Θ
- ▶ Use inference rules to derive new formulae from Θ. Continue to deduce new formulae until φ can be deduced.
- One particular calculus: resolution

Resolution: Representation

- We assume that all formulae are in CNF.
 - Can be generated using the described method.
 - Often formulae are already close to CNF.
 - ► There is a "cheap" conversion from arbitrary formulae to CNF that preserves satisfiability which is enough as we will see.
- More convenient representation
 - CNF formula is represented as set.
 - Each clause is a set of literals.
 - $(a \vee \neg b) \wedge (\neg a \vee c) \rightsquigarrow \{\{a, \neg b\}, \{\neg a, c\}\}$
- ► Empty clause (symbolically □) and empty set of clauses (symbolically 0) are different!

Resolution: The Inference Rule

Let l be a literal and \bar{l} its complement.

The resolution rule

$$\frac{C_1 \cup \{l\}, C_2 \cup \{\overline{l}\}}{C_1 \cup C_2}$$

 $C_1 \cup C_2$ is the resolvent of the parent clauses $C_1 \cup \{l\}$ and $C_2 \cup \{\overline{l}\}$. l and \overline{l} are the resolution literals.

Example: $\{a,b,\neg c\}$ resolves with $\{a,d,c\}$ to $\{a,b,d\}$.

Note: The resolvent is <u>not</u> logically equivalent to the set of parent clauses!

Notation:

 $R(\Delta) = \Delta \cup \{C|C \text{ is resolvent of two clauses in } \Delta\}$

Resolution: Derivations

D can be derived from Δ by resolution (symbolically $\Delta \vdash D$) if there is a sequence C_1, \ldots, C_n of clauses such that

- 1. $C_n = D$ and
- **2.** $C_i \in R(\Delta \cup \{C_1, ..., C_{i-1}\})$, for all $i \in \{1, ..., n\}$.

Define $R^*(\Delta) = \{D | \Delta \vdash D\}$.

Theorem (Soundness of resolution)

Let D be a clause. If $\Delta \vdash D$ then $\Delta \models D$.

Proof idea.

Show $\Delta \models D$ if $D \in R(\Delta)$ and use induction on proof length.

Let $C_1 \cup \{l\}$ and $C_2 \cup \{\overline{l}\}$ be the parent clauses of $D = C_1 \cup C_2$.

Assume $I \models \Delta$, we have to show $I \models D$.

Case 1: $I \models l$ then there must be a literal $m \in C_2$ s.t. $I \models m$. This implies $I \models D$.

Case 2: $I \models \overline{l}$ similarly, there is $m \in C_1$ s.t. $I \models m$.

This means that each model I of Δ also satisfies D, i.e., $\Delta \models D$.

Resolution: Completeness?

Do we have

$$\Delta \models \varphi \text{ implies } \Delta \vdash \varphi$$
?

Of course, could only hold for CNF. However:

$$\left\{ \{a,b\}, \{\neg b,c\} \right\} \models \{a,b,c\} \\
\not\vdash \{a,b,c\}$$

However, one can show that resolution is refutation complete:

 Δ is unsatisfiable iff $\Delta \vdash \Box$.

Entailment: Reduce to unsatisfiability testing and decide by resolution.

- Trying out all different resolutions can be very costly,
- and might not be necessary.
- There are different resolution strategies.
- Examples:
 - ▶ Input resolution $(R_I(\cdot))$: In each resolution step, one of the parent clauses must be a clause of the input set.
 - ▶ Unit resolution ($R_U(\cdot)$): In each resolution step, one of the parent clauses must be a unit clause.
 - Not all strategies are (refutation) completeness preserving. Neither input nor unit resolution is. However, there are others.

Horn Clauses & Resolution

Horn clauses: Clauses with at most one positive literal

Example: $(a \lor \neg b \lor \neg c), (\neg b \lor \neg c)$

Proposition

Unit resolution is refutation complete for Horn clauses.

Proof idea.

Consider $R_U^*(\Delta)$ of Horn clause set Δ . We have to show that if $\Box \not\in R_U^*(\Delta)$, then $\Delta(\equiv R_U^*(\Delta))$ is satisfiable.

- ▶ Assign *true* to all unit clauses in $R_U^*(\Delta)$.
- ▶ Those clauses that do not contain a literal l such that $\{l\}$ is one of the unit clauses have at least one negative literal.
- Assign true to these literals.
- ▶ Results in satisfying truth-assignment for $R_U^*(\Delta)$ (and $\Delta \subseteq R_U^*(\Delta)$).