Red-black Trees of smln]
Studienarbeit

Angelika Kimmig

January 26, 2004

Contents

1

2

Introduction

Development of the Isabelle/HOL Theory RBT
2.1 Translation of Datatypes and Functions into HOL
2.2 Defining Test Predicates

Formal Analysis

3.1 General Remarks
3.1.1 Induction Scheme
3.1.2 Lemmainsmot E

3.2 Theorems aboutins
3.2.1 Elements
3.2.2 Orderedness,
3.2.3 Weak Red Invariant
3.24 Black Invariant

3.3 Theorems about insert
3.3.1 Main Theorems for insert
3.3.2 Strong Red Invariant

Conclusion
RBT

Corrected Extract from redblack-set-fn.sml

12

13
14
14
14
14
16
16
20
21
27
27
28

28

30

35

1 Introduction

Red-black trees guarantee logarithmic height of binary trees using only one
additional bit per node to store balancing informations and are thus often
used to implement finite sets of items efficiently. A prominent example is the
set functor RedBlackSetFn provided by the library of Standard ML of New
Jersey [1]. An analysis of parts of this implementation with the theorem
prover Isabelle [2] revealed a major error in the library code. The trees
produced by the given insertion and deletion functions often violate red-
black invariants. The presented Isabelle/HOL theory includes insertion and
deletion of elements, although deletion is not considered in the proofs. A
corrected version of the insertion function is provided. The complete theory
can be found in the appendix, as well as the corrected functor code.

The code of this set functor is based on Chris Okasaki’s implementation
of red-black trees [3], the delete function on the description by Cormen,
Leiserson and Rivest [4].

According to the latter ones, a binary search tree is a red-black tree if it
satisfies the following red-black properties:

P1) Every node is either red or black.

P2) The root is black.

)-U

P4) If a node is red, then both its children are black.

P5) For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

(P1)
(P2)
(P3) Every leaf is black.
(P4)
(P5)

The informal specification of red-black trees in redblack-set-fn.sml formu-
lates this as

A red-black tree should satisfy the following two
invariants:

Red Invariant: each red node has a black parent.
Black Condition: each path from the root to an empty
node has the same number of black nodes (the tree’s
black height).

The Red condition implies that the root is always
black.

The Isabelle/HOL theory RBT consists of two parts, the first one modelling
datatypes and functions extracted from the set functor, the second one defin-
ing predicates for proofs of invariants. Among the difficulties of converting
the original code to an Isabelle theory are syntactic transformations to meet

restrictions imposed by Isabelle as well as providing well-founded relations
such that termination can be proven automatically. For deletion, errors in
case of elements not being present have to be modelled. Predicates are de-
fined to test for presence of elements in trees and for orderedness of trees.
Two red invariants are formulated. The weak one corresponds to invariant
(P4) and thus accepts a red root if no red node has a red child. The strong
one combines this with invariant (P2) and thus agrees with the informal
specification. However, it has to be said that trees built by the insertion
function do not meet the strong red invariant. Therefore, an alternative
function which corrects this is given. Definitions of black height and black
invariant complete the theory.

Based on this theory, four main theorems are proven for the original insertion
function.

1. Inserting adds the element to be inserted to the tree and keeps all
elements of the original tree.

2. Inserting an element into an ordered tree results in an ordered tree.
3. Inserting preserves the weak red invariant, i.e. property (P4).

4. Inserting preserves the black invariant (property (P5)) provided that
the weak red one (property (P4)) holds before insertion.

This theorems are used to prove the same facts for the alternative insertion
function. In addition, it is shown that this one preserves the strong red
invariant, i.e. each red node has a black parent (properties (P4) and (P2)).

This paper proceeds as follows: Section 2 presents the theory, starting
from the original code fragments and explaining the underlying principles
as well as difficulties encountered during the development. Section 3 gives
an overview of the formal analysis. First, some general schemes are intro-
duced. The core part of this section consists of the presentation of the four
main proofs, together with some lemmata which are used there. Finally,
section 3.3 sketches the corresponding proofs for the new insertion function
and shows that this one satisfies all required invariants.

2 Development of the Isabelle/HOL Theory RBT

2.1 Translation of Datatypes and Functions into HOL

In order to prove properties of the implementation with Isabelle, the data-
structure and the corresponding algorithms are isolated from the set functor
and converted to an Isabelle/HOL theory called RBT.thy.

The original ML-code defines datatypes at the beginning of the functor as
follows:

functor RedBlackSetFn (K : ORDXKEY) :> ORDSET
where Key = K =
struct

structure Key = K
type item = K.ord_key
datatype color =R | B

datatype tree
=E
| T of (color x tree x item x tree)

In ML, ORD_KEY denotes abstract linearly ordered keys of type ord _key
together with a comparison function compare of type ord_key * ord _key
-> order. Thus, the datatype ml_order as well as axiomatic type classes
ord _key and LINORDER are introduced in the Isabelle theory and item, color
and tree are defined. LINORDER allows to inherit properties of linear orders
as e. g. transitivity from Isabelle’s 1inorder by linking results of the compare
function to ordinary comparisons by < and =. This results in the following
part of RBT.thy:

datatype ml_order = LESS | EQUAL | GREATER
axclass ord_key < type

consts

’ ”

compare "’a::ord_key => ’a => ml_order

axclass LINORDER < linorder, ord_key
LINORDER_less ” ((compare x y) = LESS) = (x < y)”
LINORDER_equal ” ((compare x y) = EQUAL) = (x = y)”
LINORDER _greater ” ((compare x y) = GREATER) = (y < x)”

types ’a item = ’a::ord_key
datatype color =R | B
datatype ’a tree = E | T color (’a tree) (’a item) (’a tree)

The insertion function ins for red-black trees is taken from the following
ML function add for sets, where m is the tree storing the set and x is the
element to be added.

fun add (SET(nltems, m), x) = let

val nltems’ = ref nltems
fun ins E = (nltems’ := nltems+1; T(R, E, x, E))
| ins (s as T(color, a, y, b)) = (case K.compare(x, y)

of LESS => (case a
of T(R, ¢, z, d) => (case K.compare(x, z)
of LESS => (case ins c
of T(R, e, w, f)=>

T(R, T(B,e,w,f), z, T(B,d,y,b))
| ¢ =>T(B, T(R,c,z,d), y, b)
(x end case *))
| EQUAL => T(color, T(R, ¢, x, d), y, b)
| GREATER => (case ins d
of T(R, e, w, f)=>
T(R, T(B,c,z,e), w, T(B,f,y,b))
| d =>7T(B, T(R,c,z,d), y, b)
(x end case *))
(* end case x))
| - =>T(B, ins a, y, b)
(x end case x))
| EQUAL => T(color, a, x, b)
| GREATER => (case b
of T(R, ¢, z, d) => (case K.compare(x, z)
of LESS => (case ins c
of T(R, e, w, f)=>
T(R, T(B,a,y,e), w
| ¢ =>T(B, a, y, T(R,c,
(* end case %))
| EQUAL => T(color, a, y, T(R, ¢, x, d))
| GREATER => (case ins d
of T(R, e, w, f)=>
T(R, T(B,a,y,c), z, T(B,e,w,f))
| d=>T(B, a, y, T(R,c,z,d))
(* end case %))
(x end case x))
| - =>T(B, a, y, ins b)
(* end case x))
(x end case x))

, T(B, f,2,d))

f’
,d))

val m = ins m
in

SET (! nltems’, m)
end

Inserting into the empty tree E simply creates a red node containing the
new element, both of its children being leaves. If an element equal to the
new one is already present in the tree, it is just replaced. New elements
are inserted into the corresponding subtree. Subtrees which are not red
are simply replaced by the result of the recursive call, their father becoming
black. For red subtrees, recursive calls are performed on their corresponding
subtree. In order to guarantee that no red node has a red child, we have
to distinguish between results with red and black root. To achieve this,
different actions are chosen depending on whether the recursive call uses
one of the outermost subtrees or one of the inner ones. Fig.1 represents
the first group, fig. 2 the second one. Black results are just linked to the
corresponding parent node as shown on the left of each figure. In the case
of red results, this would lead to a red-red conflict, which can’t be corrected
by simply recoloring one of the nodes. This would change black heights and
thus violate the black invariant. Therefore, recolorations are combined with

Figure 1: Inserting x<zinto (T B (T Rczd) y b) with ins(x,c)=(T C e w f).
For C=B, w is linked to z (left tree). For C=R, this would violate the red
invariant. A single rotation to the right is performed and C is changed to B
(right tree).

rotations to preserve both invariants. In the case of inserting into one of the
outermost subtrees, a single rotation is performed which lifts the red father
to be the new root, and the red child is colored black (fig. 1, right tree). The
remaining case requires a double rotation. Again, the red child of the new
red root is blackened, as can be seen on the right in figure 2. Details on this
will be provided in sections 3.2.3 and 3.2.4 which present the proofs of this
invariants.

As some of the recursive calls do not use immediate subtrees of the root,
the function is not a primitive recursive one and can not be expressed by
primrec. It is modeled by recdef using the size of the tree as measure
function to prove termination. The syntactic restriction of Isabelle’s case-
construct forces some rearrangements of the code. It requires all constructors
of a datatype to be present in exact order of definition and therefore allows
neither immediate distinctions between trees with red or black root nor
wildcards. As a consequence of that, all constructs of the form

case a of (TR ¢ z d) => do—this
| - => do—that

must be translated to

case a of E => do—that
| (Tmc z d) => (case m of R=> do—this
| B=> do—that)

duplicating the non-red case to meet both empty and black trees and result-
ing in the following definition:

consts

Figure 2: Inserting x, z<x<y, into (T B (T R ¢ z d) y b) with
ins(x,d)=(T C e w f). For C=B, w is linked to z (left tree). For C=R,
this would violate the red invariant. A double rotation is performed and C
is changed to B (right tree).

ins :: ”’a::LINORDER item #* ’a tree => ’a tree”
recdef ins "measure (%(x,t).(size t))”
ins_empty ”ins (x, E) = TRE x E”
ins_branch
7ins (x, (T color a y b)) = (case (compare x y)
of LESS => (case a
of E=> (T B (ins (x, a)) y b)
| (Tmc z d) => (case m
of R => (case (compare x z)
of LESS => (case (ins (x, c¢))
of E=>(TB (TRE=zd)yb)
Tmew f) => (case m
of R=>(TR (TBewf)z (TB
(TB(TR (TBewf)z
> (T color (TR cxd)y
=> (case (ins (x, d))
(TR cz E)yb)
) => (case m
R(TBcze)w (TBT
| B=>(TB (TRcz (TBewtft))
)
)
T B (ins (x, a)) y b))

—

H - 0~

<<

| B=>

| EQUAL => (T color a x b)
| GREATER => (case b
of E=> (T B ay (ins (x, b)))
| (Tmc z d) => (case m
of R =>(case (compare x z)

of LESS => (case (ins (x, c))
of E=>(TBay (TREz d))
| (Tmew f) => (case m
of R=>(TR (TBaye)w (TBTfzd))
| B=>(TBay (TR(TBewf)zd)))
)
(T color ay (TR c x d))

| GREATER => (case (ins (x, d))
of E => (TBay(TRCZE))
| (Tmew f) => (case m
R=> (T (TBewf))

R (TBayc)
z

B=>(TBay (TRc¢ ?TBewf))))

The delete function is composed of several interacting local functions. It
raises an error if the element to be deleted is not present. Its structure is as
follows (ommitted parts are presented below):

(* Remove an item. Raises LibBase.NotFound if not found. x)
local
datatype zipper
= TOP

| LEFT of (color * item % tree % zipper)
| RIGHT of (color = tree x item # zipper)
in
fun delete (SET(nltems,t),k) = let
fun zip [...]
fun bbZip [...]
fun delMin [...]
fun join [...]
fun del [...]
in
SET(nltems—1,del (t,TOP))
end
end (x local x)

A zipper can be used to store parts of a tree which do not contain the
element to be deleted in a way which allows to reconstruct the tree’s original
structure. An item is deleted by calling the local deletion function del with
the empty zipper TOP.
fun del (E,z) = raise LibBase.NotFound
| del (T(color,a,y,b),z) = (case K.compare(k,y)
of LESS => del (a,LEFT(color,y,b,z))
| EQUAL => join (color,a,b,z)
| GREATER => del (b,RIGHT(color,a,y,z))
(* end case x))

This function searchs for the element in the tree and simultaneously con-
structs the corresponding zipper. Descending to a subtree of the current
node is done by adding a layer to the zipper which remembers the direction

we chose (LEFT or RIGHT), the color of the current node, its element and its
other subtree, the order of the latter two depending on the type of layer. If
the element to be deleted is found, the function join is called.

fun join (R,E,E,z) = zip(z,E)

| join (-,a,E,z) = #2(bbZip(z,a)) (x color = black x)
| join (-,E,b,z) = #2(bbZip(z,b)) (x color = black x)
| join (Color a,b,z) = let
val (x, (needB b’)) = delMin (b,TOP)
in
if needB

then #2(bbZip(z,T(color,a,x,b’)))
else zip(z,T(color,a,x,b’))
end

Based on the color of the element’s node, both subtrees of that node and the
zipper containing all informations about the rest of the tree, join decides
which function to call to rearrange the tree. If the deleted node was a red
one with two empty children, we can just replace it by a leaf. This is done
by function zip:
fun zip (TOP,t) = t

| zip (LEFT(color,x,b,z),a) = zip(z,T(color,a,x,b))

| zip (RIGHT(color,a,x,z),b) = zip(z,T(color,a,x,b))

This function inverts the construction of the zipper as done in del and thus
reconstructs the tree stored in the zipper, linking the given tree into the
reconstructed one at the position indicated by the outermost layer of the
zipper.

If one subtree was empty (the node should then have been black because of
the invariants), join calls function bbZip to link the other one to the node’s
father.

(* bbZip propagates a black deficit up the tree until either

* the top is reached, or the deficit can be covered. It

* returns a boolean that is true if there is still a
¥ deficit and the zipped tree.

fun bbZip (TOP,t) = (true,t)

| bbZip (LEFT(B,x,T(R,c,y,d),z),a) = (* case 1L x)
bbZip (LEFT(R,x,c,LEFT(B,y,d,z)),a)

| bbZip (LEFT(color,x,T(B,T(R,c,y,d),w,e),z),a) =

(% case 3L %)

bbZip (LEFT(color,x,T(B,c,y,T(R,d,w,e)),z),a)
| bbZip (LEFT(color,x,T(B,c,y,T(R,d,w,e)),z),a) =

(x case 4L x)

(false,zip (z,T(color,T(B,a,x,c),y,T(B,d,w,e))))

| bbZip (LEFT(R,x,T(B,c,y,d),z),a) = (* case 2L x)
(false,zip (z,T(B,a,x,T(R,c,y,d))))

| bbZip (LEFT(B,x,T(B,c,y,d),z),a) = (*x case 2L x)
bbZip (z,T(B,a,x,T(R,c,y,d)))

| bbZip (RIGHT(color,T(R,c,y,d),x,z),b) = (* case 1R x)
bbZip (RIGHT(R,d,x,RIGHT(B,c,y,z)),b

| bbZip (RIGHT(color,T(B,T(R,c,w,d),y,e),x,z),b) =
(% case 3R x)

bbZip (RIGHT(color,T(B,c,w,T(R,d,y,e)),x,z),b)

| bbZip (RIGHT(color,T(B,c,y,T(R,d,w,e)),x z) b) =
(* case 4R x)

(false,zip (z,T(color,c,y,T(B,T(R,d,w,e),x,b))))

| bbZip (RIGHT(R, (B c,y,d),x,z),b) = (x case 2R x)
(false,zip (z,T(B,T(R,c,y, d),x,b))

| bbzip (RIGHT(B,T(B,c,y,d),x,z),b) = (* case 2R x)
bbZip (z,T(B,T(R,c,y,d),x,b))

| bbZip (z,t) = (false,zip(z))

This function returns a boolean indicating whether reestablishing the black
invariant has been successful and the resulting tree. Studying the details
here would lead too far.
If none of the subtrees is empty, join needs to replace the node by its
symmetric successor before reconstructing the tree. It is determined by
function delMin:
fun delMin (T(R,E,y,b),z) = (y,(false,zip(z,b)))

| delMin (T(B,E,y,b),z) = (y,belp(z b))

| delMin (T (Color a,y,b),z) = delMin(a,LEFT(color,y,b,z))

| delMin (E,_.) = raise Match

The result contains the symmetric successor, a boolean indicating whether
there still is a black deficit to be covered from this part of the tree and the
rest of the subtree. Depending on the value of the boolean, join calls either
zip or bbZip to construct the entire tree. This completes the presentation
of the original function.

In the theory, the datatype zipper is defined first, followed by a list of
functions and their types. In the cases of delMin and join, the results are
of option types because searching for the minimal element in an empty tree
raises an error or leads to result None respectively.
datatype ’a zipper

= TOP

| LEFT color (’a item) (’a tree) (’a zipper)

| RIGHT color (’a tree) (’a item) (’a zipper)

consts

zip :: ”’a zipper => ’a tree => ’a tree”
bbZip :: ”’a zipper * 'a tree => bool % ’a tree”
delMin :: ”’a tree x ’a zipper

=> (a item * (bool x ’a tree)) option ”
join :: ”color *x ’a tree *x ’a tree x 'a zipper

=> (’a tree) option”

del :: 7”’a::LINORDER item => ’a tree => ’a zipper

=> (a tree) option”

The reconstruction function zip is the one to be modeled most easily by
just using primrec.

primrec

zip_-top "zip TOP t = t”

zip_-left ”zip (LEFT color x b z) a = zip z (T color a x b)”
zip_right 7zip (RIGHT color a x z) b = zip z (T color a x b)”

Providing a well-founded relation such that Isabelle is able to prove termi-
nation for bbZip requires more complex constructions. Recursive calls of
that function either decrease the depth of the zipper argument (cases 2),
increase the depth of the zipper and simultaneously decrease the size of the
tree component of the zipper’s outermost layer (cases 1), or they just per-
form a rotation to the right on the zipper’s outermost tree (cases 3). To
cover all those possibilities, the size of a zipper is measured by the accumu-
lated size of all its tree components, i.e. the number of nodes in those trees,
where nodes occuring in left subtrees are counted twice to cover rotations.
consts

iz - =
treesize ”’a tree => nat”
zippersize ”’a zipper => nat”

primrec
treesize_empty 7treesize E = 07
treesize_branch 7treesize (T ¢ a x b)
=1+ treesize a + treesize a + treesize b”
primrec

zippersize_top "zippersize TOP = 07
zippersize_left

7zippersize (LEFT ¢ x t z) = treesize t + zippersize z”
zippersize_right

”zippersize (RIGHT ¢ t x z) = treesize t + zippersize z”

recdef bbZip ”"measure (%(z,t).(zippersize z))”

"bbZip (TOP, t) = (True,
"bbZip ((LEFT B x (T R c
bbZip ((LEFT R x c¢ (LE
?bbZip ((LEFT color x (T B
bbZip ((LEFT color x (T
"bbZip ((LEFT color x (T B
(False, zip z (T color (
"bbZip ((LEFT R x (T B ¢ y
(False, zip z (T B a x (
"bbZip ((LEFT B x (T B ¢ y
bbZip (z, (T B a x (TR

?bbZip ((RIGHT color (T R

bbZip ((RIGHT R d x (RI
?bbZip ((RIGHT color (T B (TR ¢

T

B

r

y

AH
Uj%oﬂwv

caHaHdo W
N

bbZip ((RIGHT color (
"bbZip ((RIGHT color (T

(False, zip z (T colo
"bbZip ((RIGHT R (T B ¢) x

(False, zip z (TB (TR c y
"bbZip ((RIGHT B (T B ¢ y d) x

bbZip (z, (TB (TR c y d) x b))”
"bbZip (z, t) = (False, zip z t)”

delMin uses detailed pattern matching and thus needs general recursion,
using the tree’s size as measure to guarantee termination.
recdef delMin ”measure (%(t,z).(size t))”
7delMin ((TRE y b), z) = Some (y, (False, zip z b))”
7delMin ((T BE y b), z) = Some (y, bbZip(z, b))”
?delMin ((T color a y b), z)
= delMin(a, (LEFT color y b z))”
”delMin (E, z) = None”

Although join itself is not recursive, recdef is used here because it allows
extensive pattern matching. The fourth pattern depends on the result of
delMin, thus the result of the function is of type (’a tree) option. The
nested assignment in the let-construct has to be split into a sequence of
assignments for Isabelle.
recdef join 7{}”
7join (R, E, E, z) Some (zip z E)”
7join (c, a, E, z) = Some (snd(bbZip(z, a)))”
b, z) (
C

a z
7join (c, E, zZ Some (snd(bbZip(z, b)))”
7join (color, a, b, z) = (case (delMin(b, TOP))
of None => None
| (Some r) =>

(let
x = fst (r); needB = fst(snd(r)); b’ = snd(snd(r))
in

if needB

then Some (snd(bbZip(z,(T color a x b’))))
else Some (zip z (T color a x b’))

)"

The local deletion function del can be directly modeled by primrec.

primrec
del_empty ”del k E z = None”
del_branch 7del k (T color a y b) z = (case (compare k y)
of LESS => (del k a (LEFT color y b z))
| EQUAL => (join (color, a, b, z))
| GREATER => (del k b (RIGHT color a y z)))”

This completes the definition of the local functions. Finally, we define the
global deletion function delete which calls the local function del with the
empty zipper TOP.

constdefs
delete :: ”’a::LINORDER item => ’a tree
=> (Ca tree) option”
?delete k t == del k t TOP”

11

2.2 Defining Test Predicates

The second part of the theory consists of definitions of the predicates needed
for the theorems to be proven.

isin tests for the presence of a specified element without assuming ordered-
ness, isord is true if and only if the tree is ordered, i.e. if it is either empty
or both its subtrees are ordered and all elements of the left subtree are
smaller than the one at the root and those of the right one greater.

consts
isin :: ”’a::LINORDER item => ’a tree => bool”
isord :: 7(’a::LINORDER item) tree => bool”
primrec
isin_.empty ”isin x E = False”

isin_branch ”isin x (T ¢ a y b) = (((compare x y) = EQUAL)
| (isin x a) | (isin x b))”

primrec
isord_empty ”isord E = True”
isord_branch
7isord (T ¢ a y b) = (isord a & isord b
& (! x. isin x a ——> ((compare x y) = LESS))
& (! x. isin x b ——> ((compare x y) = GREATER)))”

The weak red invariant redinv corresponds to property (P4), i.e. no red
node has a red child. The strong red invariant R_inv combines the weak one
with property (P2), which expects the root to be black. They are considered
seperately because R_inv doesn’t always hold after insertion as one can easily
see by looking at ins(x,E) or the cases where the recursive call results in
a red tree. All those cases lead to trees with red root. The alternative
insertion function insert fixes this problem by recoloring the root to be
black after completing the insertion as it is done by Chris Okasaki [3].

consts
redinv :: 7 (’a item) tree => bool”
R_inv :: 7(’a item) tree => bool”

recdef redinv ”"measure (%t. (size t))”
?redinv E = True”

"redinv (T B a y b) = (redinv a & redinv b)”
"redinv (TR (TR a x b) y ¢) = False”
"redinv (TR a x (TRby c)) = False”
"redinv (TR a x b) = (redinv a & redinv b)”

recdef R_inv "{}”
"R_.inv E = True”
"R.inv (TR a y b) = False”
"R.inv (T B a y b) = (redinv a & redinv b)”

consts
makeBlack :: 7’a tree => ’a tree”

12

primrec
"makeBlack E = E”
?makeBlack (T color a x b) = (T B a x b)”

constdefs
insert :: ”’a::LINORDER item => ’a tree => ’a tree”
7insert x t == makeBlack (ins(x,t))”

Finally, max B_height is defined to be the maximal number of black nodes
on a path from the root to a leaf. A tree satisfies property (P5), the black
invariant blackinv, if and only if both its subtrees satisfy this invariant and
their max B _height is identical. The black invariant is thus not tested by
looking at all the paths from the root to leaves but by recursively comparing
black heights of neighbouring subtrees, starting at the empty ones.

consts
blackinv :: 7 (’a item) tree => bool”
max_B_height :: 7 (’a item) tree => nat”

recdef max_B_height ”measure (%t. (size t))”
”max_B_height E = 0”
"max_B_height (T B a y b)
= Suc(max (max_B_height a) (max_B_height b))”
"max_B_height (T R a y b)
= (max (max_B_height a) (max_B_height b))”

recdef blackinv ”"measure (%t. (size t))”
”blackinv E = True”
?blackinv (T color a y b) = ((blackinv a) & (blackinv b)
& ((max_B_height a) = (max_B_height b)))”

This completes the development of the theory.

3 Formal Analysis

This section presents formal proofs that show that ins(x,t)—received by
transcribing the ML-program to HOL—results in a correct red-black tree
containing all elements of the original tree t plus x provided that t also was
a correct red-black tree. Correct here means ordered and satisfying both the
weak red invariant redinv and the black invariant blackinv, i.e. property
(P2)—the root being black—is excluded.

We first explain some general principles. Section 3.2 consists of four sec-
tions corresponding to the four main theorems for ins(x,t). Large parts of
all proofs are just done by appropriate case distinctions and simplifications.
The underlying ideas will be presented, especially those of the more compli-
cated parts. There are often several symmetric cases which can be solved
analogously. Section 3.3 then shows that the same properties also hold for

13

the corrected insertion function insert, and that this one additionaly pre-
serves the strong red invariant R_inv, i.e. property (P2).

3.1 General Remarks
3.1.1 Induction Scheme

As the insertion function ins has been defined as a recursive function via
recdef, Isabelle provides the induction scheme RBT.ins.induct for this
function. It covers all recursive calls of ins, i.e. those on the immediate
subtrees of the root provided these are black or empty and those on the
subtrees of these subtrees otherwise. It will be used for all proofs and there-
fore is listed in figure 3 in its general form to give an idea of the meta level
assumptions used later.

3.1.2 Lemma ins_not_E

As the translation of the case-syntax forced occurences of patterns like "case
(ins (x, ¢)) of E", the first lemma to be proven states the fact that the
result of ins(x,t) is never empty. This allows to eliminate those cases by
contradiction in further proofs. The proof is done by complete case distinc-
tion following the structure of ins and simplification using the assumptions.
The resulting lemma

ins_not E "ins(x,t) # E"

will be used to remove subgoals with a premise of the form ins(x,t)=E by
contradiction.

3.2 Theorems about ins

The following proofs all start in the same way. This common scheme is pre-
sented here. Initially, induction is performed using RBT.ins.induct (cf. fig.
3). The first subgoal, which states the theorem for the empty tree E, can be
solved automatically, and if the theorem consists of a chain of implications,
the premises are shifted to the meta level assumptions for the remaining
one. The next step replaces occurences of ins by its definition. This is done
by simplification, where definitions of the property currently of interest are
removed from the simpset to avoid undesired unfolding. Then, the subgoal
is split into eleven instances of the current theorem, where x is the element
to be inserted into (T color a y b):

l.x<y,a=E

2. x <y,a="TR treel aa tree2, x < aa

14

[Ax. 7P x E;
x color a b.
A y

[Vm ¢ z 4.

m =B A

b=TmczdA

compare x y = GREATER — 7P x b;
Vz m c d.

compare x z = GREATER A

m =R A

b=TmczdA

compare x y = GREATER — 7P x d;
Vz m c d.

compare x z = LESS A

m =R A

b=TmczdA
compare x y = GREATER — 7P x c;
b = E A compare x y = GREATER —

7P x b;
Vm c z d.

m =B A

a=TmczdA

compare x y = LESS — 7P x a;
Vz m c d.

compare x z = GREATER A

m =R A

a=TmczdA

compare x y = LESS — 7P x d;
Vz m c d.

compare x z = LESS A

m =R A

a=TmczdA
compare x y = LESS — 7P x c;
a =E A compare x y = LESS —
7P x a
= 7P x (T color a y b)]
= 7P 7u ?v

Figure 3: Induction scheme RBT.ins.induct

15

3. x <y,a=TR treel aa tree2, x = aa

x >y, b=TR treel aa tree2, x < aa

4. x <y, a="TR treel aa tree2, x > aa
5. x <y,a="T B treel aa tree2

6. x=y

7.x>y,b=E

8.

9.

x >y, b=TR treel aa tree2, x = aa
10. x >y, b =T R treel aa tree2, x > aa
11. x >y, b =T B treel aa tree2

Inserting into an empty subtree (1/7) can normally be solved by simplifica-
tions, 6, 3 and 9 require adding properties of equality to the simpset to show
that replacing an element by an equal one does not change any properties
of the tree. Inserting into a black subtree (5/11) is sometimes slightly more
complicated, and the remaining four cases, i. e. really inserting into red sub-
trees, have to be split once again according to the result of the recursive
call. This results in four impossible cases solved immediately by contradic-
tion (cf.3.1.2) and eight cases which usually are the most interesting ones.

3.2.1 Elements

We first want to prove that inserting a new element manipulates the content
of a tree in the expected way.

isin_ins "(isin y (ins (x,t))) =
((compare y x) = EQUAL V (isin y t)) "

This theorem is quite obvious when looking at the code, and in fact it can
be proven using case_tac, Asm_full simp_tac (replacing EQUAL by = where
necessary) and force without further manipulations.

3.2.2 Orderedness

During the proof of the fact that ins preserves orderedness, subgoals arise
where it has to be proven that inserting an element into the corresponding
subtree of an ordered tree does not influence relations between elements of
that subtree and the root, i.e. if for example an element less than the one
at the root is inserted into the left subtree, all elements of the resulting left
subtree are smaller than the one at the root. This is stated as lemma for all
six possible recursive calls. All those lemmata are proven by simplification
using theorem isin_ins and properties of linear orders.

16

ins_left "(V x. isin x t = compare x y = LESS)
N compare z y = LESS
— (V¥ x. isin x (ins(z,t)) = compare x y = LESS)"

ins_left_left "(V x. isin x (T ¢ t1 w t2) = compare x y = LESS)
A compare z y = LESS = (V x. isin x (T cl (ins(z,tl))
w t2) = compare x y = LESS)"

ins_left_right "(V x. isin x (T ¢ t1 w t2) = compare x y =
LESS) A compare z y = LESS — (V x. isin x (T cl tl w
(ins(z,t2))) = compare x y = LESS)"

ins_right "(V x. isin x t = compare x y = GREATER)
A compare z y = GREATER
— (V x. isin x (ins (z,t)) == compare x y = GREATER)"

ins_right_left "(V x. isin x (T ¢ t1 w t2) = compare x y =
GREATER) A compare z y = GREATER — (V x. isin x
(T c1 (ins(z,t1)) w t2) = compare x y = GREATER)"

ins_right_right "(V x. isin x (T ¢ t1 w t2) = compare x y =
GREATER) A compare z y = GREATER — (V x. isin x
(T c1 t1 w (ins(z,t2))) = compare x y = GREATER)"

Moreover, it turned out to be useful to state that the color of a tree does
not influence its elements, which can be proven automatically.

isin B.R "isin x (T Bayb) =isin x (TR a y b)"

Proving orderedness of ins(x,t) only requires t to be ordered, thus we
have to show

isord_ins "isord t — isord(ins (x,t))"

The first interesting case considered here is the one where a new element is
inserted into the left subtree which is black. This requires proving isord (T
B (ins (x, (T B treel aa tree2))) y b), which is simplified to

3. Ax a y b colora treel aa tree2.
[isord (ins (x, T B treel aa tree2));
isord treel A
isord tree2 A
(Vx. isin x treel —— compare x aa = LESS) A
(Vx. isin x tree2 — compare x aa = GREATER) A
isord b A
(Vx. (compare x aa = EQUAL — compare x y = LESS) A
(isin x treel — compare x y = LESS) A
(isin x tree2 — compare x y = LESS)) A

17

(Vx. isin x b — compare x y = GREATER);
compare x y = LESS; a = T B treel aa tree2;
colora = B
—> Vxa. isin xa (ins (x, T B treel aa tree2))
— compare xa y = LESS

i.e. it has to be shown that all elements xa of the new left subtree are smaller
than y, the one at the root. This is done using isin_ins and properties of
linear orders.

Now consider the case where the left subtree a has a red root and inserting
into its left subtree results in a black tree which directly replaces the original
subtree without changing the structure of the rest of the tree.

2. Ax color a y b colora treel aa tree2 colorb treela ab
tree2a.

[isord treel — isord (T B treela ab tree2a);

isord (T color (T R treel aa tree2) y b);

compare x y = LESS; a = T R treel aa tree2;

colora = R; compare x aa = LESS;

ins (x, treel) = T B treela ab tree2a; colorb = BJ
—>isord (T B (T R (T B treela ab tree2a) aa tree2) y b)

Parts of this can be solved by simplification using the assumptions. It re-
mains to show

(Vx. isin x (T B treela ab tree2a) — compare x aa = LESS)
A (Vx. isin x (T R (T B treela ab tree2a) aa tree2)
— compare x y = LESS)

This means proving that the modified leftmost subtree only contains ele-
ments less than its ancestors, which has already been shown in the lemmata
presented at the beginning of this section. We thus rewrite (T B treela ab
tree2a) to ins (x, treel) and use the corresponding lemmata ins_left
and ins_left_left to complete this part.

If the result of the recursive call is a red tree, the tree will be restructured to
avoid a link between two red nodes. In the case of the left left subtree (and
the right right one analogously) this is done by recoloring the root of the
new tree to black and performing a single rotation resulting in the following
tree:

1. Ax color a y b colora treel aa tree2 colorb treela ab
tree2a.

[isord treel — isord (T R treela ab tree2a);

isord (T color (T R treel aa tree2) y b);

compare x y = LESS; a = T R treel aa tree2;

colora = R; compare x aa = LESS;

ins (x, treel) = T R treela ab tree2a; colorb = R]

—> isord (T R (T B treela ab tree2a) aa (T B tree2 y b))

18

Simplification transforms the conclusion to

(Vx. isin x tree2 — compare x y = LESS)

A (Vx. isin x (T B treela ab tree2a) — compare x aa = LESS)
A (Vx. isin x (T B tree2 y b) — compare x aa = GREATER).
The first conjunct can be solved immediately, because the original tree was
ordered. The third one is simplified to

Vx. isin x b — aa < x

and finally solved exploiting transitivity of < and the fact that y was between
aa and b in the ordered initial tree. After recoloring the root to red, which
does not change the order of elements, the remaining conjunct

(Vx. isin x (T B treela ab tree2a) —— compare x aa = LESS)

can again be solved by rewriting the tree to ins (x, treel) and using the
appropriate lemma. The proof of that case is then completed.

In the remainig two subgoals the tree is restructured performing double
rotations and recolorations which cause the changed subtree to be split.

1. Ax color a y b colora treel aa tree2 colorb treela ab
tree2a.

[isord tree2 — isord (T R treela ab tree2a);

isord (T color (T R treel aa tree2) y b);

compare x y = LESS; a = T R treel aa tree2;

colora = R; compare x aa = GREATER;

ins (x, tree2) = T R treela ab tree2a; colorb = R]
—> isord (T R (T B treel aa treela) ab (T B tree2a y b))

Exploiting premises and properties of linear orders leads to conclusion

Vx. isin x treela — aa < x) A

Vx. isin x tree2a —x <y) A

<

b = aa—aa < ab) A (isin x treel — x < ab)) A

(
(
(
(Vx

. (x
. (x=y—ab<y) A (isin x b— ab < x)).

The first conjunct can be removed by exploiting the facts that treelais part
of ins (x, tree2) and that elements of ins (x, tree2) are either from
tree2 and therefore greater than aa or equal to x which is by assumption
greater than aa. The second conjunct is removed analogously.

(Vx. (x = aa — aa < ab) A (isin x treel — x < ab))

will be shown next.

19

The first half, namely aa < ab, is solved by the fact that ab is the root of
the result of the recursive call in the right subtree of aa. Remains to show

(isin xa treel — xa < ab).

The premise is shifted to the meta assumptions and again we use the fact
that ab is the root of ins(x,tree2) and thus either equal to x or in tree2
as stated in isin_ins.

(ab = x — xa < x) A (isin ab tree2 — xa < ab)

xa < ab holds because xa is in treel which originally was the left subtree of
aa, thus xa < aa. This implies xa < ab. We still have to show the second
conjunct

(isin ab tree2 — xa < ab)

which is again solved using transitivity of < with aa as intermediate element.
We now show the last conjunct of the original conclusion, i. e.

(Vx. (x = y—ab < y) A(isin x b— ab < x)),

the root of ins(x,tree2) is less than the overall root and less than all
elements in the right subtree.

The first half is solved by the fact that isin ab (ins(x,tree2)), which is
true as ab is the root of that tree, implies ab < y. The same fact is used to
solve the second half: isin ab (ins(x,tree2)) impliesab < yandy < xa
because of isin xa b. Proving the symmetric case analogously completes
the proof of the theorem. We thus have shown that ins preserves search
tree properties.

3.2.3 Weak Red Invariant

In order to proof that ins preserves the weak red invariant redinv (cf. p.12),
we first prove lemma

redinv_R_ B "redinv (T R a y b) — redinv (T B a y b)"

by case distinctions and Asm_full simp_tac. Case distinctions are neces-
sary because redinv (T R a y b) can only be simplified using information
about the subtrees.

redinv_ins "redinv t — redinv (ins(x,t))"

is the theorem to be shown.

For inserting into a black subtree this leads to the obligation of showing that
both subtrees of the result are redinv. In the case of (T B (ins (x, (T B
treel aa tree2))) y b), this means proving

20

3. A\x color a y b colora treel aa tree2.
[redinv treel A redinv tree2
—— redinv (ins (x, T B treel aa tree2));
redinv (T color (T B treel aa tree2) y b);
compare x y = LESS; a = T B treel aa tree2; colora = B]
— redinv (ins (x, T B treel aa tree2)) A redinv b

The first half is reduced to redinv treel A redinv tree2 using the im-
plication in the assumptions. We then have to instantiate color and b by
case distinction such that redinv (T color (T B treel aa tree2) y b)
can be simplified. This results in either a contradiction in the premises or
in the fact that all subtrees satisfy the invariant and thus proves our current
claim.

The rest of the proof is done similarly. In the cases where the result of the
recursive call is red, an appropriate instance of the lemma is added to the
premises to be able to do so.

3.2.4 Black Invariant

As we have already proven that trees built by ins starting at the empty tree
are redinv, we add redinv t to the assumptions for showing that insertion
preserves the black invariant blackinv (cf.p.12). This reduces the number
of cases to be considered and ensures that recursive calls on subtrees of red
nodes are calls on either empty or black trees. Insertion into empty subtrees
can be handled by simplification. Calls on black subtrees allow using the
following lemma which states that inserting an element into a tree with black
root which is both redinv and blackinv does not change the tree’s black
height.

max_B_height_ins B "(EX a y b. t=(T B a y b))
— redinv t — blackinv t
— max_ B height (ins (x,t)) = max_B_height t"

Apart from inserting fresh elements into red subtrees, everything can be
proven just by simplifications. The remaining cases can be completly re-
duced to equations about connections between black heights of different
subtrees. In the case of the recursive call on the left left subtree with red re-
sult, which leads to T R (T B treela ab tree2a) aa (T B tree2 y b),
this means showing

1. Ax color a y b colora treel aa tree2 colorb treela ab
tree2a.
[(3a y b. treel =T B ay b) —
redinv treel —
max (max B height treela) (max B height tree2a) =

21

max_B_height tree2;
color = B; compare x y = LESS; a = T R treel aa tree2;
colora = R; compare x aa = LESS;
ins (x, treel) = T R treela ab tree2a;
colorb = R; redinv (T R treel aa tree2); redinv b;
blackinv treel; blackinv tree2;
max_B_height treel = max_B_height tree2; blackinv b;
max (max B height treel) (max_B_height tree2)
= max B height b]
—> max (max (max B height treela) (max B height tree2a))
(max (max_B_height tree2) (max_B_height b)) =
max (max B height tree2) (max B height b)

(max (max_B_height treela) (max_B height tree2a)) can be replaced
by max B height tree2 provided that redinv treel holds. In this case,
the above equation becomes trivial. We thus exploit the red invariant given
in the assumptions by case distinctions on treel and tree2 and simplifi-
cations. Proofs for the second and third subsubtree in some cases require
to show a chain of implications between inequalities which can be solved
by another case distinction on an appropriate inequality. In the case of the
right subtree of a, both subtrees of a being black, this is

(max_B_height tree2a < max B height b
— max_B_height b <max B height treela
— max_B_height treela < max B height b)
A max_B height tree2a < max B height b

which is solved by case distinction on

max_B_height treela < max B height tree2a.

This allows for establishing the theorem
blackinv_ins "(redinv t A blackinv t) —— blackinv (ins(x,t))"

Inserting into the left black subtree requires proving blackinv (T B (ins
(x, T B treel aa tree2)) y b) which reduces to

5. Ax color a y b colora treel aa tree2.
[redinv treel A redinv tree2 —
blackinv (ins (x, T B treel aa tree2));
redinv (T color (T B treel aa tree2) y b);
blackinv treel A
blackinv tree2 A
max_B height treel = max B_height tree2 A

22

Figure 4: ins(x, (T B (T R treel aa tree2) y b)) with black heights
of subtrees, ins(x, treel) resulting in (T R treela ab tree2a)

blackinv b A
Suc (max (max_B_height treel) (max_B height tree2))
max_B_height b;
compare x y = LESS; a = T B treel aa tree2; colora
— blackinv (ins (x, T B treel aa tree2)) A
max B height (ins (x, T B treel aa tree2))
= max_B_height b

B

We thus have to show that the result of the recursive call is blackinv, which
is implied by the original subtrees being redinv, and that it has the same
black height as the original subtree, which can be shown using the above
lemma. In order to use redinv (T color (T B treel aa tree2) y b),
we have to do case distinctions on color and b. Most cases can then be
solved by simplification.

For color = Rand b = T B treela ab tree2a we have to show

max_B_height (ins (x, T B treel aa tree2))
= Suc (max_B_height tree2a).

tree2a is the right subtree of the black tree b and therefore has black height
one less than b which itself has same black height as (T B treel aa tree2)
because of the black invariant holding for the original tree. Using the lemma
about black heights completes this part of the proof.

Inserting into the left subtree of the red tree a with red result leads to (T

R (T B treela ab tree2a) aa (T B tree2 y b)) (fig.4). We then have
to show that

1. Ax color a y b colora treel aa tree2 colorb treela ab
tree2a.
[redinv treel —

23

blackinv treela A blackinv tree2a

A max_B_height treela = max_B_height tree2a;

redinv (T color (T R treel aa tree2) y b);

compare x y = LESS; a = T R treel aa tree2; colora = R;

compare x aa = LESS;

ins (x, treel) = T R treela ab tree2a; colorb = R;

blackinv treel; blackinv tree2;

max_B_height treel = max_B_height tree2; blackinv b;

max (max_B_height treel) (max_B_height tree2)

= max_B_height b]

— blackinv treela A
blackinv tree2a A
max_B_height treela = max_B_height tree2a A
max_B_height tree2 = max_B_height b A
max (max_B_height treela) (max_B_height tree2a) =
max (max_B_height tree2) (max_B_height b)

i.e. the result of the recursive call is blackinv (first three conjuncts) and
its subtrees have the same black height as the second subtree of the root
and the second subtree of the left subtree. Being blackinv is due to treel
being redinv (as the whole tree is redinv). tree2 and b have the same
black height because treel and tree2 have the same black height and b’s
black height is the maximum of those two. As the whole tree is redinv and
treel has a red father, treel has to be either empty or black. The first
case can be done by case distinctions and simplifications. In the second one,
we can again use the lemma to show the last equality. Case distinctions on
the components of the original tree are necessary to simplify and use the red
invariant.

Forb = T R treelb ac tree2band treel = T B treelc ad tree2c, we
have to show

max_B_height tree2a = max_B_height tree2b
which is done via

max_B_height tree2a = max_B_height (T R treela ab tree2a)
max_B_height (ins (x, T B treelc ad tree2c))
max_B_height (T B treelc ad tree2c)

= max_B_height tree2b.

The first step is obvious, the second one just changes the representation of
the tree, the third one uses the lemma and the last one is done automatically
using the assumptions. The rest of the first subgoal is solved the same way.
For the new element being inserted in a’s right subtree with red result—
leading to (T R (T B treel aa treela) ab (T B tree2a y b)), figure

24

Figure 5: ins(x, (T B (T R treel aa tree2) y b)) with black heights
of subtrees, ins(x, tree2) resulting in (T R treela ab tree2a)

5—the conclusion to be shown is

blackinv treela A max B height tree2 = max B height treela
A blackinv tree2a A max B height tree2a = max B height b
A max (max B height tree2) (max B height treela)

= max (max B height tree2a) (max B height b)

This is what remains of blackinv(T R (T B treel aa treela) ab (T B
tree2a y b)) after simplification, where max_B_height treel has been au-
tomatically replaced by max B height tree2. We thus must prove that all
four subtrees have the same black height, and that the two new ones satisfy
the black invariant. Most of this can again be proven out of the assumptions
using similar case distinctions as before.

For b = T R treelb ac tree2b and tree2 = T B treelc ad tree2c it
simplifies to

max_B_height tree2b = max B_height treeZa

A max_ B height tree2a = max_B_height tree2b

A max (max B height tree2b) (max B height tree2a)
= max (max B height tree2a) (max B height tree2b).

It is sufficient to prove the first conjunct
max_B_height tree2b = max_B_height treeZa,

which implies the rest of the goal and can be shown as above.

The remaining cases of this goal as well as the other goals with red result
are done similar.

25

n-1 n-1

Figure 6: ins(x, (T B (T R treel aa tree2) y b)) with black heights
of subtrees, ins(x,treel) resulting in (T B treela ab tree2a)

If inserting into the left subtree of the left subtree results in a black tree
(cf. figure 6), the initial conclusion is

blackinv treela A blackinv tree2a A

max_B_height treela = max B_height tree2a A

Suc (max (max B _height treela) (max B _height tree2a))

= max_B_height tree2 A

max (Suc (max (max B height treela) (max B height tree2a)))
(max_B_height tree2) = max B height b.

The first three conjuncts express that the resulting tree must satisfy the
black invariant, the other two that (T B treela ab tree2a), i.e. the result
of ins(x,treel), has same black height as tree2 and b.

For tree2 = T B treeld ae tree2dandb = T R treelb ac tree2b this
reduces to

max_B_height tree2a = max B_height tree2d A
Suc (max (max B height tree2a) (max B height tree2d))
= max_B_height tree2b

which is implied by
Suc (max_B_height tree2a) = Suc (max_B_height tree2d).
This is true because of

Suc (max_B_height tree2a)

26

= max_B_height (T B treela ab tree2a)
max_B_height (ins (x, T B treelc ad tree2c))
max_B_height (T B treelc ad tree2c)

= Suc (max_B_height tree2d)

Similar procedures are used to complete the proof. It has thus been shown
that trees built by ins are both redinv and blackinv.

3.3 Theorems about insert

As mentioned before, the problem of the implementation, that the invariant
(P2) is violated, can be fixed by making the root black after insertion, which
is done by function insert in the theory. The following section adapts the
above proofs of the main theorems to that function, the next one proves
that insert preserves the strong red invariant.

3.3.1 Main Theorems for insert

The four main theorems concerning ins are used to prove the following
corresponding ones for insert:

isin_insert "(isin y (insert x t))
= ((compare y x) = EQUAL V (isin y t)) "
isord_insert "isord t — isord(insert x t)"

redinv_insert "redinv t — redinv (insert x t)"

blackinv_insert "(redinv t A blackinv t)
— blackinv (insert x t)"

Each time, (insert x t) is first replaced by its definition (makeBlack
(ins(x,t))). We then perform case distinction on ins(x,t), removing
the case of the empty tree by contradiction and solving the other two by
using the corresponding theorem about ins. In the case of isin_insert,
for instance, we have to show

1. Acolor treel a tree2.
ins (x, t) = T color treel a tree2 —
isin y (T B treel a tree2)
= (compare y x = EQUAL V isin y t)

which, after case distinction on color, can be solved by

isin y (T B treel a tree2) = isin y (ins(x,t))

= (compare y x = EQUALV isin y t).

27

The second step corresponds to isin_ins, the first one is done reusing the
lemma about colors and contents in the case of the red root and by mere
simplification otherwise.

The remaining theorems are proven similarly, using a chain of implications
of the form P(t)—P(ins(x,t))—P(insert x t) to reduce them to the ones
about ins.

3.3.2 Strong Red Invariant

Finally, we will show that trees built by insert in fact satisfy the strong
red invariant R_inv (cf. p.12).

R_inv_insert "R_inv t — R_inv (insert x t)"
If inserting into a black tree results in a red one, we have to show

1. Acolor treel a tree2 colora treela aa tree2a.
[ins (x, T B treela aa tree2a) = T R treel a tree2;
color = R; redinv treela A redinv tree2a;
t = T B treela aa tree2a; colora = B]
= redinv treel A redinv tree2

The assumption R_inv t has been simplified to redinv treela A redinv
tree2a, which is equal to redinv t. This implies redinv(ins(x,t)), as
has been proven in theorem redinv_ins. We thus have to show

redinv (T R treel a tree2) — redinv treel A redinv tree2

This can be done by case distinctions on both subtrees. If at least one of
them is red, the premise will be false, otherwise, it will be simplified to the
conclusion. The rest of the proof is done similarly. The alternative insertion
function insert thus preserves all considered invariants.

4 Conclusion

This work examines formal properties of red-black trees used to implement
sets in the library of Standard ML of New Jersey. Red-black trees as well as
the insertion and deletion functions are modelled in an Isabelle/HOL theory.

SML implementation of both functions revealed some major errors.

The delete function is able to produce trees which violate up to three es-
sential properties of red-black trees. Those false trees have a red root, red
nodes with red children and different numbers of black nodes on paths from
the root to a leaf. Correction of this will be a lot more difficult than in the
case of insertion. Therefore, the presented theory just models the original
version.

28

The insertion function violates one property of red-black trees, namely the
one stating that the root of a red-black tree is always black. This is cor-
rected by modifying the function such that after completing the insertion
with the original function, the color of the root is set to black. The SML
implementation of this corrected version can be found in appendix B.

The HOL theory is used to formally prove that the original insertion func-
tion preserves all other invariants, i.e. it maintains search tree properties
and it guarantees that there are neither red nodes with red children nor dif-
ferent numbers of black nodes on different paths from the root to some leaf.
Afterwards, it is shown that this also holds for the corrected function. The
formal analysis ends with the proof of the fact that the corrected function
ensures the root being black. It thus has been verified that this extended
version of the insertion function maintains all properties of red-black trees.

References

[1] redblack-set-fn.sml. Standard ML of New Jersey, version 110.0.7.
http://www.smlnj.org

[2] http://isabelle.in.tum.de

[3] Chris Okasaki. Functional Pearls: Red-Black trees in a functional set-
ting. Journal of functional programming 9(4), 1999

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduc-
tion to algorithms, 2nd ed. Cambridge, Mass.: MIT Press, 2001

[5] Lawrence C. Paulson. The Isabelle Reference Manual. 2003

[6] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle’s Logics:
HOL. 2003

[7] Riccardo Pucella. Notes on Programming Stan-
dard ML of New Jersey. Cornell University, 2001.
http://www.cs.cornell.edu/riccardo/smlnj.html

[8] Lawrence C. Paulson. ML for the working programmer. Cambridge Uni-
versity Press, 1996

29

A RBT

(x Title: RBT.thy
Author: Angelika Kimmig

RedBlackTrees as used for implementing sets in sminj redblack—set—fn.sml, smlinj
110.0.7

0

RBT = Main +

(x mimicing ml’s datatype order x)

datatype ml-order = LESS | EQUAL | GREATER

(x signature ORD-KEY: type ord-key and val compare : ord-key * ord-key —>
order *)

azxclass ord-key < type

consts
compare :: 'aord-key => 'a => ml-order

axclass LINORDER < linorder, ord-key
LINORDER-less ((compare x y) = LESS) = (z < y)
LINORDER-equal ((compare x y) = EQUAL) = (z = y)
LINORDER-greater ((compare x y) = GREATER) = (y < x)

(* defining redblacktrees x)

types 'a item = 'a::ord-key

datatype color = R | B

datatype 'a tree = E | T color ('a tree) (‘a item) ('a tree)

(* ins as used by add, element to be inserted given as first argument, case— distinction
expanded to meet Isabelle’s syntactic constraints x)

consts
ins :: 'a:LINORDER item * 'a tree => 'a tree

recdef ins measure (%(z,t).(size t))
ins-empty ins (z, E)=TREzE
ins-branch
ins (z, (T color a y b)) = (case (compare z y)
of LESS => (case a
of E => (T B (ins (z, a)) y b)

30

| (Tmczd)=> (case m
of R => (case (compare x z)
of LESS => (case (ins (z, c))
of E=>(TB(TREzd)yb)
| (Tmewf)=> (case m
of R=>(TR(TBewf)z(TBdyb))
| B=>(TB(TR(TBewf)zd)yb))
| EQUAL => (T color (TR cxzd) yb)
| GREATER => (case (ins (z, d))
of E=>(TB(TRczE)yb)
| (Tmewf)=> (case m
of R=>(TR(TBcze)w (TBfyb))
| B=>(TB(TRcz(TBewf)) yhb))
:)
| B=> (T B (ins (z, a)) y b))
)
| EQUAL => (T color a z b)
| GREATER => (case b
of E => (T Bay (ins (z, b)))
| (Tmczd)=> (case m
of R =>(case (compare t z)
of LESS => (case (ins (z, ¢))
of E=>(TBay (TREzd))
| (Tmewf)=> (case m
of R=>(TR(TBaye)w (TBfzd))
| B=>(TBay (TR(TBewf)zd)))

)
| EQUAL => (T color ay (T R cz d))
| GREATER => (case (ins (z, d))
of E=>(TBay (TRczE))
| (Tmewf)=> (case m

of R=>(TR(TBayc)z(TBewf))
|B:>)(TBay(TRcz (T Bewf))))
)

| B=> (T Bay(ins (z,))))))

)

(x deletion x)

(* originally local datatype, used to memorize information about structure and con-
tent of tree *)

datatype 'a zipper

= TOP

| LEFT color ('a item) ('a tree) (‘a zipper)

| RIGHT color ('a tree) ('a item) ('a zipper)

(* functions used by delete *)

consts

31

zip = 'a zipper => 'a tree => 'a tree

bbZip :: 'a zipper * 'a tree => bool * 'a tree

delMin :: 'a tree * 'a zipper => ('a item * (bool * 'a tree)) option

join :: color x 'a tree x 'a tree x 'a zipper => ('a tree) option

del :: 'a:: LINORDER item => 'a tree => 'a zipper => ('a tree) option

(* reconstruction of the tree, second argument is changed subtree x)
primrec

zip-top zip TOP t =t

zip-left zip (LEFT color x b z) a = zip z (T color a © b)

zip-right zip (RIGHT color a x z) b = zip z (T color a x b)

(* needed to construct wfo for bbZip *)
consts

treesize :: 'a tree => nat

zippersize :: 'a zipper => nat

(x left subtrees have to be weighted stronger in order to cope with rotations x)
primrec

treesize-empty treesize E = 0

treesize-branch treesize (T ¢ a x b) = 1 + treesize a + treesize a + treesize b

(x sum up weights of trees in the zipper)

primrec

zippersize-top zippersize TOP = 0

zippersize-left zippersize (LEFT ¢ x t z) = treesize t + zippersize z
zippersize-right zippersize (RIGHT ¢ t x z) = treesize t + zippersize z

(* reconstructing trees, the new subtree having a black deficit *)
recdef bbZip measure (%(z,t).(zippersize z))
bbZip (TOP, t) = (True, t)
bbZip (LEFT Bx (TR cyd) z), a) =
bbZip (LEFT R x ¢ (LEFT By d z)), a) (* case 1L %)
bbZip (LEFT colorz (TB (TR cyd) we) z), a) =
bbZip (LEFT colorz (T Bcy (T R dwe)) z), a) (x case 3L x)
bbZip (LEFT colorz (TBcy (TR dwe)) z), a) =
(False, zip z (T color (T Baxc)y (T Bdwe))) (x case 4L %)
bbZip (LEFT Rz (TBcyd) z), a) =
(False, zip 2 (T Bax (T R cyd))) (* case 2L %)
bbZip (LEFT Bz (TBcyd) z), a) =
bbZip (2, (T Baxz (TR cyd))) (x case 2L)
bbZip (RIGHT color (TR cyd) x2), b) =
bbZip (RIGHT R d x (RIGHT B c y z)), b) (* case 1R)
bbZip (RIGHT color (TB(TRcwd) ye)zz),b)=
bbZip (RIGHT color (TBcw (TR dye)) zz),b) (x case 3R *)
boZip ((RIGHT color (TBecy (TRdwe)) zz),b)=
(False, zip z (T color cy (T B (T R dwe) zb))) (x case 4R)
bbZip (RIGHT R (T Bcyd) xz2z2),b) =
(False, zip z (T B (TR cy d) z b)) (x case 2R x)

32

bbZip (RIGHT B (T Bcyd) zz),b) =
boZip (2, (T B (T R cyd)xb)) (% case 2R x)
bbZip (z, t) = (False, zip z 1)

(x getting symmetric successor, information about deficit and resulting subtree *)
recdef delMin measure (%(t,z).(size t))

delMin (T R E y b), z) = Some (y, (False, zip z b))

delMin (T B E yb), z) = Some (y, bbZip(z, b))

delMin ((T color a y b), z) = delMin(a, (LEFT color y b 2))

delMin (E, z) = None (x raise Match x)

(x replaced - by ¢, let (z, (needB, b)) = delMin(b, TOP) by sequence of assigne-
ments *)
(* choose appropriate function for reconstruction)
recdef join {}
join (R, E, E, z) = Some (zip z E)
join (¢, a, E, z) = Some (snd(bbZip(z, a))) (* color = black x)
join (¢, E, b, z) = Some (snd(bbZip(z, b))) (* color = black *)
join (color, a, b, z) = (case (delMin(b, TOP)) of None => None

| (Some r) =>
(let
x = fst (r); needB = fst(snd(r)); b’ = snd(snd(r))
m
if needB

then Some (snd(bbZip(z,(T color a z b"))))
else Some (zip z (T color a z b'))

)

(x delete k *)
primrec
del-empty del k E z = None (x raise LibBase.NotFound)
del-branch del k (T color a y b) z = (case (compare k 1)
of LESS => (del k a (LEFT color y b z))
| EQUAL => (join (color, a, b, 2))
| GREATER => (del kb (RIGHT color a y z)))

(x delete k in t using del with empty zipper *)

constdefs
delete :: 'a::LINORDER item => 'a tree => ('a tree) option
delete kt == del k t TOP

(x end of translation x)

(x extended version of inserting as in Okasaki's implementation, coloring the root
black after finishing insertion x)

consts
makeBlack :: 'a tree => 'a tree

33

primrec
makeBlack E = E
makeBlack (T color a xb) = (T Bazb)

constdefs
wmsert : 'a::LINORDER item => 'a tree => 'a tree
insert © t == makeBlack (ins(z,t))

(* tnvariants x)

consts
isin :: 'a:: LINORDER item => 'a tree => bool
isord :: ('a::LINORDER item) tree => bool
redinv :: ('a item) tree => bool
R-inv :: (‘a item) tree => bool
blackinv :: ('a item) tree => bool
max-B-height :: ('a item) tree => nat

(x test for elements)

primrec

isin-empty isin © E = False

isin-branch isin x (T ¢ a y b) = (((compare x y) = EQUAL) | (isin z a) | (isin x

b))

(x test for order of elements)

primrec

isord-empty isord E = True

isord-branch isord (T ¢ a y b) = (isord a & isord b & (! z. isin x a ——> ((compare
zy) = LESS)) & (! z. isin x b ——> ((compare © y) = GREATER)))

(x weak red invariant: no red node has a red child x)
recdef redinv measure (%t. (size t))

redinv E = True

redinv (T B a y b) = (redinv a & redinv b)

redinv (T R (TR axzb)yc)= False

redinv (TR ax (T Rbyc)) = False

redinv (T R a © b) = (redinv a & redinv b)

(x strong red invariant: every red node has an immediate black ancestor, i.e. the
root is black and the weak red invariant holds)
recdef R-inv {}

R-inv E = True

R-inv (T R a y b) = False

R-inv (T B ayb) = (redinv a & redinv b)

(* calculating maximal number of black nodes on any path from root to leaf *)
recdef maz-B-height measure (%t. (size t))

maz-B-height E = 0

maz-B-height (T B a y b) = Suc(mazx (maz-B-height a) (max-B-height b))

34

maz-B-height (T R a y b) = (max (maz-B-height a) (maz-B-height b))
(* black invariant: number of black nodes equal on all pathes from root to leaf *)
recdef blackinv measure (%t. (size t))

blackinv E = True

blackinv (T color a y b) = ((blackinv a) & (blackinv b) & ((maz-B-height a) =
(max-B-height b)))

end

B Corrected Extract from redblack-set-fn.sml

Extract from redblack—set—fn.sml
COPYRIGHT (c) 1999 Bell Labs, Lucent Technologies.

modified by Angelika Kimmig:
— corrected function add using an additional local function
makeBlack to guarantee black root after insertion

This code is based on Chris Okasaki’s implementation of
red—black trees. The linear—time tree construction code is
based on the paper ”Constructing red—black trees” by Hinze,
and the delete function is based on the description in Cormen,
Leiserson, and Rivest.

A red—black tree should satisfy the following two invariants:

Red Invariant: each red node has a black parent.

Black Condition: each path from the root to an empty node has the
same number of black nodes (the tree’s black height).

its child will be a red leaf.

¥R K KX KX X K K KX KX K K K XK KX X X KX KX

)

functor RedBlackSetFn (K : ORDKEY) :> ORDSET where Key = K =
struct

structure Key = K
type item = K.ord_key
datatype color =R | B

datatype tree

35

The Red condition implies that the root is always black and the Black
condition implies that any node with only one child will be black and

=5
| T of (color % tree % item * tree)

datatype set = SET of (int % tree)

[

fun add (SET(nltems, m), x) = let

val nltems’ = ref nltems
fun ins E = (nltems’ := nltems+1; T(R, E, x, E))
| ins (s as T(color, a, y, b)) = (case K.compare(x, y)

of LESS => (case a
of T(R, ¢, z, d) => (case K.compare(x, z)
of LESS => (case ins c
of T(R, e, w, f)=>
T(R, T(B,e,w,f), z, T(B,d,y,b))
| ¢ =>T(B, T(R,c,z,d), y, b)
(x end case x))
| EQUAL => T(color, T(R, ¢, x, d), y, b)
| GREATER => (case ins d
of T(R, e, w, f)=>
T(R, T(B,c,z,e), w, T(B,f,y,b))
| d:>T(B’ T(R7C’Z’d)7 Y7 b)
(x end case x))
(% end case x*))
| - =>T(B, ins a, y, b)
(x end case x*))
| BEQUAL => T(color, a, x, b)
| GREATER => (case b
of T(R, ¢, z, d) => (case K.compare(x, 2z)
of LESS => (case ins c¢
of T(R, e, w, f)=>
T(R, T(B,a,y,e), w, T(B,f,z,d))
| ¢=>T(B, a, y, T(R,c,z,d))
(x end case x*))
| EQUAL => T(color, a, y, T(R, ¢, x, d))
| GREATER => (case ins d
of T(R, e, w, f)=>
T(R7 T(B7a’Y’C)’ Z’ T(Bﬂeﬂw7f))
| d=>T(B, a, y, T(R,c,z,d))
(x end case %))
(x end case x))
| - =>T(B, a, y, ins b)
(x end case x))
(* end case x))
fun makeBlack E = E
| makeBlack (T(color, a, x, b)) = T(B, a, x, b)
val m = makeBlack (ins m) (x corrected x)
in

36

SET (! nltems’, m)

end
(* Remove an item. Raises LibBase.NotFound if not found. x)
local
datatype zipper
= TOP
| LEFT of (color * item % tree % zipper)
| RIGHT of (color * tree * item # zipper)
in

fun delete (SET(nltems, t), k) = let
fun zip (TOP, t) = ¢t
| zip (LEFT(color, x, b, z), a) = zip(z, T(color, a, x, b))
| zip (RIGHT(color, a, x, z), b) = zip(z, T(color, a, x, b))
(x bbZip propagates a black deficit up the tree until either the top

% is reached, or the deficit can be covered. It returns a boolean
x that is true if there is still a deficit and the zipped tree.
*)

fun bbZip (TOP, t) = (true, t)
| bbZip (LEFT(B, x, T(R, ¢, y, d), z), a) = (% case 1L x)
bbZip (LEFT(R, x, ¢, LEFT(B, v, d, z)), a)
| bbZip (LEFT(color, x, T(B, T(R, ¢, y, d), w, e), z), a) =
(x case 3L x)
bbZip (LEFT(color, x, T(B, ¢, y, T(R, d, w, e)), z), a)
| bbZip (LEFT(color, x, T(B, ¢, y, T(R, d, w, e)), z), a) =
(x case 4L x)

(false, zip (z, T(color, T(B, a, x, ¢), y, T(B, d, w, e))))

| bbZip (LEFT(R, x, T(B, ¢, y, d), z), a) = (* case 2L x)
(false, zip (z, T(B, a, x, T(R, ¢, y, d))))

| bbZip (LEFT(B, x, T(B, ¢, y, d), z), a) = (% case 2L x)
bbZip (z, T(B, a, x, T(R, ¢, y, d)))

| bbZip (RIGHT(color, T(R, ¢, y, d), x, z), b) = (x case 1R %)
bbZip (RIGHT(R, d, x, RIGHT(B, c, y, z)), b)

| bbZip (RIGHT(color, T(B, T(R, ¢, w, d), vy, e), x, z), b) =

(x case 3R x)
bbZip (RIGHT(color, T(B, ¢, w, T(R, d, y, e)), x, z), b)
| bbZip (RIGHT(color, T(B, ¢, y, T(R, d, w, e)), x, z), b) =
(% case 4R x)

(false, zip (z, T(color, ¢, y, T(B, T(R, d, w, e), x, b))))

| bbZip (RIGHT(R, T(B, ¢, y, d), x, z), b) = (* case 2R x)
(false, zip (z, T(B, T(R, ¢, y, d), x, b)))

| bbZip (RIGHT(B, T(B, ¢, y, d), x, z), b) = (% case 2R x)
bbZip (2, T(B, T(R, ¢, y, d), x, b))

| bbZip (z, t) = (false, zip(z, t))

fun delMin (T(R, E, y, b), z) = (y, (false, zip(z, b)))
| delMin (T(B, E, y, b), z) = (y, bbZip(z, b))
| delMin (T(color, a, y, b), z) = delMin(a, LEFT(color, y, b, 2z))

37

| delMin (E, _) = raise Match
fun join (R, E, E, z) = zip(z, E)

| join (-, a, E, z) = #2(bbZip(z, a)) (x color =
| join (-, E, b, z) = #2(bbZip(z, b)) (x color =
| join (color, a, b, z) = let

val (x, (needB, b’)) = delMin(b, TOP)

in

if needB

then #2(bbZip(z, T(color, a, x, b’)))
else zip(z, T(color, a, x, b’))
end
fun del (E, z) = raise LibBase.NotFound
| del (T(color, a, y, b), z) = (case K.compare(k, y)
of LESS => del (a, LEFT(color, y, b, z))
| EQUAL => join (color, a, b, z)
| GREATER => del (b, RIGHT(color, a, y, z))
(x end case x*))
in
SET(nltems—1, del(t, TOP))
end
end (x local x)

[

end;

38

black x)
black *)

	Introduction
	Development of the Isabelle/HOL Theory RBT
	Translation of Datatypes and Functions into HOL
	Defining Test Predicates

	Formal Analysis
	General Remarks
	Induction Scheme
	Lemma ins_not_E

	Theorems about ins
	Elements
	Orderedness
	Weak Red Invariant
	Black Invariant

	Theorems about insert
	Main Theorems for insert
	Strong Red Invariant

	Conclusion
	RBT
	Corrected Extract from redblack-set-fn.sml

