Advanced AI Techniques (WS05/06)

Exercise sheet 9
Deadline: Tuesday, 24 Jan 06

Exercise 1 (4 points)

Implement the five state random walk example from the lecture with the policy that chooses one of the two actions of each state with equal probability, like shown in the figure below. Rewards are written below the arrows, and all transitions are deterministic.

Use the Every-Visit Monte Carlo algorithm with $\alpha=0.5, \gamma=1$. Simulate 1000 episodes.
*. If you want, in another version of your program, implement the First-Visit MC algorithm, and/or experiment with implementations of $T D$. You can also choose smaller values for α. What is the effect? (This part of the exercise is voluntary and does not count for points.)

Exercise 2 (2 points)

What are the differences (advantages, disadvantages, prerequisites) of the Monte Carlo algorithm and the TD algorithm? Give an example for a situation when you would rather use Monte Carlo, and when you would prefer the TD(0) algorithm?

Exercise 3 (based on Friday's (Jan 20) lecture: 6 points)

Imagine an agent standing in front of two closed doors. Behind one of the doors is a tiger and behind the other is a large reward. If the agent opens the door with the tiger, then a large penalty is received (presumably in the form of some amount of bodily injury). Instead of opening one of the two doors, the agent can listen, in order to gain some information about the location of the tiger. Unfortunately, listening is not free;
in addition, it is also not entirely accurate. There is a chance that the agent will hear a tiger behind the left-hand door when the tiger is really behind the right-hand door, and vice versa. Immediately after the agent opens a door and receives a reward or penalty, the problem resets, randomly relocating the tiger behind one of the two doors.

The transition and observation models can be described in detail as follows. We refer to the state of the world when the tiger is on the left as "sl" and when it is on the right as "sr". The actions are LEFT, RIGHT, and LISTEN. There are only two possible observations which are given after the LISTEN action: to hear the tiger on the left (TL) or to hear the tiger on the right (TR). The LISTEN action does not change the state of the world. When the world is in state "sl", the LISTEN action results in observation TL with probability 0.85 and the observation $T R$ with probability 0.15 ; conversely for world state "sr". The LEFT and RIGHT actions cause a transition to world state " $s l$ " with probability 0.5 and to state " $s r$ " with probability 0.5 (essentially resetting the problem). No matter what state the world is in, the LEFT and RIGHT actions result in either observation with probability 0.5. The reward for opening the correct door is +10 and the penalty for choosing the door with the tiger behind it is -100 . The cost of listening is -1 .

Derive the optimal undiscounted finite-horizon policies for the tiger problem.
a. Begin with the situation-action mapping for the time horizon $T=1$ at time step $t=1$ when the agent only gets to make its single decision. If the agent believes with high probability that the tiger is on the left, then the best action is to open the right door; if it believes that the tiger is on the right, the best action is to open the left door. Calculate the corresponding belief states. What if the agent is highly uncertain about the tiger's location? Is it always better choose a door, or could it be the best thing to do listen although there is no chance to use the gained information within the game? Why?
b. What are the optimal belief based policies for $T=2$? and $T=3$?
*. (Voluntary:) If you want, you can proceed with $T=4, T=5$, etc. Do you see regularities?

