
Advanced AI Techniques (WS05)

Exercise sheet 5

Deadline: Tuesday, 13th, 2005

Suppose we want to determine the average annual temperature at a particular
location on earth over a series of years. To make it interesting, suppose the years
we are concerned with lie in the past, and no temperature measurements from
that time are available. However, we have indirect evidence of the temperatures
in the past by looking at the tree rings of trees cut down today.

To simplify the problem, we only consider two annual temperatures, hot (h)
and cold (c), and three different tree ring sizes, small, medium and large, or
s, m and l. Suppose that modern evidence indicates that the probability of a
hot year to be followed by another hot year is 0.7 and the probability that a
cold year is followed by another cold year is 0.6. The information so far can
be summarized as:

h c
h

[
0.7 0.3
0.4 0.6

]
c

Also suppose that current research indicates the following correlation be-
tween the size of tree growth rings and temperature:

s m l

h
[

0.1 0.4 0.5
0.7 0.2 0.1

]
c

Hidden Markov models are good choice in this situation because the states h
and c are hidden since we cannot directly observe the temperature in the past.
The transition matrix A and the observation matrix B are

A =
(

0.7 0.3
0.4 0.6

)
, B =

(
0.1 0.4 0.5
0.7 0.2 0.1

)
.

Assume that there is additional evidence that the initial state distribution is

π = (0.6, 0.4) ,

i.e., a hot year is apriori more likely. Now consider a particular four-year period
of interest where we observe the series of tree rings

s,m, s, l .
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Exercise 1 (4 points) As discussed in the lecture, the forward procedure is a
dynamic programming approach for efficiently evaluating observation sequences
with hidden Markov model (HMMs). In order to compute P (o1, o2, . . . , on | M)
for a given observation sequence o1, o2, . . . , on given a HMM M , a dynamic
programming approach is employed. More precisely, the so called forward prob-
ability

P (o1, o2, . . . , ot, qt = s | M)

is iteratively computed for t = 1, 2, . . . , n. In the formula, qt = s denotes that
the system is in states s at time t.

As shown in the lecture, this leads to the following iterative formulae:

1. Initialization: α1(s) = πs · bs(o1)

2. Induction: αt+1(s) =
[∑

s′ αt(s′) · as′s

]
· bs(ot+1)

3. Termination: P (o1o2 . . . on | M) =
∑

s αn(s)

Compute the probability of s,m, s, l using the forward procedure, and list all
α-values.

Exercise 2 (4 points) The probability P (o1o2 . . . on | M) can also be com-
puted in a backward manner. The backward procedure computes the so called
backward probability:

βt(s) = P (ot+1, ot+2, . . . , on | qt = s,M) .

for t = n, n − 1, . . . , 0 as follows:

1. Initialization: βn(s) = 1

2. Induction: βt(s) =
∑

s′ ass′ · bs′(ot+1) · βt+1(s′)

3. Termination: P (o1o2 . . . on | M) =
∑

s πs · bs′(o1) · β1(s)

The correctness of the iterative formulae for calculating the α-values has
been veryfied in the lecture. Do the same for the iterative formulae for the
β-values given above.

Exercise 3 (4 points) Having a forward procedure, it is straightforward
to decode an observation sequence o1, o2, . . . , on given a HMM M , i.e., com-
puting the hidden state sequence s1, s2, . . . , sn which most likely generated
o1, o2, . . . , on. Instead of summing over all αt(s), one basically selects the max-
imum. This is what the so-called Viterbi algorithm does. Decode s,m, s, l.
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