
Part II. Statistical NLP

Advanced Artificial Intelligence

Applications of HMMs and PCFGs in NLP

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from Adam Przepiorkowski (Poland)
Figures by Manning and Schuetze

Contents

 Part of Speech Tagging
• Task
• Why

 Approaches
• Naive
• VMM
• HMM
• Transformation Based Learning

 Probabilistic Parsing
• PCFGs and Tree Banks

Parts of chapters 10, 11, 12 of Statistical NLP, Manning and Schuetze,
and Chapter 8 of Jurafsky and Martin, Speech and Language
Processing.

Motivations and Applications

 Part-of-speech tagging
• The representative put chairs on the table
• AT NN VBD NNS IN AT NN
• AT JJ NN VBZ IN AT NN

 Some tags :
• AT: article, NN: singular or mass noun,

VBD: verb, past tense, NNS: plural noun,
IN: preposition, JJ: adjective

Table 10.1

Why pos-tagging ?

 First step in parsing
 More tractable than full parsing, intermediate

representation
 Useful as a step for several other, more complex NLP

tasks, e.g.
• Information extraction
• Word sense disambiguation
• Speech Synthesis

 Oldest task in Statistical NLP
 Easy to evaluate
 Inherently sequential

Different approaches

 Start from tagged training corpus
• And learn

 Simplest approach
• For each word, predict the most frequent tag

 0-th order Markov Model
 Gets 90% accuracy at word level (English)

 Best taggers
• 96-97% accuracy at word level (English)
• At sentence level : e.g. 20 words per sentence, on average

one tagging error per sentence
• Unsure how much better one can do (human error)

Notation / Table 10.2

Visual Markov Model

 Assume the VMM of last week
 We are representing

 Lexical (word) information implicit

Table 10.3

Hidden Markov Model

 Make the lexical information explicit and use
HMMs

 State values correspond to possible tags
 Observations to possible words
 So, we have

Estimating the parameters

 From a tagged corpus, maximum likelihood
estimation

 So, even though a hidden markov model is
learning, everything is visible during learning !

 Possibly apply smoothing (cf. N-gramms)

Table 10.4

Tagging with HMM

 For an unknown sentence, employ now
the Viterbi algorithm to tag

 Similar techniques employed for protein
secondary structure prediction

 Problems
• The need for a large corpus
• Unknown words (cf. Zipf’s law)

Unknown words

Two classes of part of speech :
open and closed (e.g.
articles)
for closed classes all words
are known

Z: normalization constant

What if no corpus available ?

 Use traditional HMM (Baum-Welch) but
• Assume dictionary (lexicon) that lists the possible tags for

each word

 One possibility : initialize the word generation
(symbol emmision) probabilities

bjl
* =

0 if t j is not a part of speech for wl

1 /T (wl) otherwise

Assume bjl
* = P(t j |wl) = 1 /T (wl), i.e. uniform

We want P(wl | t j) = P(t j |wl)P(wl)
P(t j)

=
P(t j |wl)P(wl)

wm
 P(t j |wm).P(wm)

=

1.C(wl)
T (wl). C(wk)

wk

wm
 1.C(wm)

T (wm). C(wk)
wk

=

C(wl)
T (wl)

wm
 C(wm)

T (wm)

Transformation Based Learning
(Eric Brill)

 Observation :
• Predicting the most frequent tag already results in

excellent behaviour
 Why not try to correct the mistakes that are

made ?
• Apply transformation rules

 IF conditions THEN replace tag_j by tag_I

 Which transformations / corrections
admissible ?

 How to learn these ?

Table 10.7/10.8

The learning algorithm

Remarks

 Other machine learning methods could
be applied as well (e.g. decision trees,
rule learning …)

Rule-based tagging

 Oldest method, hand-crafted rules
 Start by assigning all potential tags to each

word
 Disambiguate using manually created rules
 E.g. for the word that

• If
 The next word is an adjective, an adverb or a quantifier,
 And the further symbol is a sentence boundary
 And the previous word is not a consider-type verb

• Then erase all tags apart from the adverbial tag
• Else erase the adverbial tag

Learning PCFGs for parsing

 Learning from complete data
• Everything is “observed” “visible”, examples are parse trees
• Cf. POS-tagging from tagged corpora
• PCFGs : learning from tree banks,
• Easy : just counting

 Learning from incomplete data
• Harder : The EM approach
• The inside-outside algorithm
• Learning from the sentences (no parse trees given)

How does it work ?

 R := {r| r is a rule that occurs in one of
the parse trees in the corpus}

 For all rules r in R do
• Estimate probability label rule
• P(N -> S) = Count(N -> S) / Count(N)

Conclusions

 Pos-tagging as an application of SNLP
 VMM, HMMs, TBL
 Statistical tagggers

• Good results for positional languages (English)
• Relatively cheap to build
• Overfitting avoidance needed
• Difficult to interpret (black box)
• Linguistically naive

Conclusions

 Rule-based taggers
• Very good results
• Expensive to build
• Presumably better for free word order languages
• Interpretable

 Transformation based learning
• A good compromise ?

 Tree bank grammars
• Pretty effective (and easy to learn)
• But hard to get the corpus.

