Advanced Artificial Intelligence

Part ll. Statistical NLP

Applications of HMMs and PCFGs in NLP

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from Adam Przepiorkowski (Poland)
Figures by Manning and Schuetze

Contents

= Part of Speech Tagging
* Task
* Why
= Approaches
* Naive
« VMM
« HMM
* Transformation Based Learning

= Probabilistic Parsing
+ PCFGs and Tree Banks

Parts of chapters 10, 11, 12 of Statistical NLP, Manning and Schuetze,
and Chapter 8 of Jurafsky and Martin, Speech and Language
Processing.

Motivations and Applications

= Part-of-speech tagging
The representative put chairs on the table
AT NN VBD NNS IN AT NN
AT JJ NN VBZ INAT NN

= Some tags:

AT: article, NN: singular or mass noun,
VBD: verb, past tense, NNS: plural noun,
IN: preposition, JJ: adjective

Tag

AT
BEZ
IN
JJ

JJIR
MD

NN
NNP
NNS
PERIOD
PN

RB

RBR
TO

Part Of Speech

article

the word is

preposition

adjective

comparative adjective

modal

singular or mass noun
singular proper noun

plural noun

a2

personal pronoun

adverb

comparative adverb

the word to

verb, base form

verb, past tense

verb, present participle, gerund
verb, past participle

verb, non-3rd person singular present
verb, 3rd singular present
wh- determiner (what, which)

Table 10.1 Some part-of-speech tags frequently used for tagging English.

Why pos-tagging ?

First step in parsing
More tractable than full parsing, intermediate
representation

Useful as a step for several other, more complex NLP
tasks, e.g.

* Information extraction

* Word sense disambiguation

* Speech Synthesis

Oldest task in Statistical NLP
Easy to evaluate
Inherently sequential

Different approaches

= Start from tagged training corpus
And learn

= Simplest approach

For each word, predict the most frequent tag
= (O-th order Markov Model
= Gets 90% accuracy at word level (English)

= Best taggers
96-97% accuracy at word level (English)

At sentence level : e.g. 20 words per sentence, on average
one tagging error per sentence

Unsure how much better one can do (human error)

the word at position i in the corpus

the tag of w;

the words occurring at positions i through i + m
(alternative notations: w;j - » * Witm, Wiy -« «» Wixm, Wi(i+m))
the tags tj - - * tiym fOr wi - - - Witm

the I word in the lexicon

the j™ tag in the tag set

the number of occurrences of w! in the training set
the number of occurrences of t/ in the training set
the number of occurrences of t/ followed by t*

the number of occurrences of w! that are tagged as t/
number of tags in tag set

number of words in the lexicon

sentence length

Table 10.2 Notational conventions for tagging.

Visual Markov Model

= Assume the VMM of last week
= We are representing

C(t,t%)
C'(t7)

= Lexical (word) information implicit

P(tF|t)) =

Table 10.3

Second tag
First tag AT BEZ IN NN VB PERIOD
AT 0 0 0 48636 0 19
BEZ 1973 0 426 187 0 38
IN 43322 0 1325 17314 0 185
NN 1067 3720 42470 11773 614 21392
VB 6072 42 4758 1476 129 1522
PERIOD 8016 75 4656 1329 954 0

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For
example, NN occurs 48636 times after AT.

Hidden Markov Model

Make the lexical information explicit and use
HMMs

State values correspond to possible tags
Observations to possible words
So, we have

Ajj = P(tj ‘ﬁi)
bir, = P(w"|th)

Estimating the parameters

= From a tagged corpus, maximum likelihood
estimation

PPN O (AN

(lj; — P(ﬁ”ﬁ) — é(ﬁ))
.y C(wk .t
bit = P(w"|t!) = (c(m |

= S0, even though a hidden markov model is
learning, everything is visible during learning !

= Possibly apply smoothing (cf. N-gramms)

10.2 Markov Model Taggers

Table 10.4

AT BEZ IN NN VB PERIOD

bear 0 0 10 0 43 0
is 0 10065 0 0 0 0
move 0 0 0 36 133 0
on 0 0 5484 0 0 0
president 0 0 0 382 0 0
progress 0 0 0 108 4 0
the 69016 0 0 0 0 0
0 0 0 0 0 48809

349

Table 10.4 Idealized counts of tags that some words occur within the Brown
Corpus. For example, 36 occurrences of move are with the tag NN.

Tagging with HMM

= For an unknown sentence, employ now
the Viterbi algorithm to tag

= Similar techniques employed for protein
secondary structure prediction
= Problems

* The need for a large corpus
» Unknown words (cf. Zipf's law)

Unknown words

Two classes of part of speech :

Feature Value | NNP NN NNS VBG VBZ

open and closed (e.g. unknown word yes | 0.05 0.02 0.02 0.005 0.005
articles) e T T
for closed classes all words T T e
are known fin | 005 010 000 000 000
Z: nOrmaIization Constant other | 0.89 0.88 0.02 0.00 0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging.
For example, P(unknown word = yes|NNP) = 0.05 and P(ending = -ing|VBG) =
1.0.

I ’(*u.r'r'\i-‘r) = = P(unknownlt’) x P(capitalized|t’) x P(endings

f.'j
7)

What if no corpus available “?

= Use traditional HMM (Baum-Welch) but

* Assume dictionary (lexicon) that lists the possible tags for
each word

= One possibility : initialize the word generation
(symbol emmision) probabilities

b C (w")
Zw - E)j_m_ C'(w™)

0 if #/ is not a part of speech for w'
1/T(w') otherwise

E)j;_ —

b, =

jl

Assume b, = P(t' Iw')=1/T(w"), i.e. uniform
P 1wHPW)

We want P(w' |#/) = .
P(t)

B P IwHPW")
Y P@E Iw").P(W™)

1.C(w")
Tw').Y C(w)

1.C(w™)
Wzm Tw").> Cw")

C(w")

T(w")

Cw™)
2 T

Transformation Based Learning
(Eric Brill)

Observation :

* Predicting the most frequent tag already results in
excellent behaviour

Why not try to correct the mistakes that are

made ?

* Apply transformation rules
= |F conditions THEN replace tag_j by tag_|

Which transformations / corrections
admissible ?

How to learn these ?

Table 10.7/10.8

Schemd - He3 ' beo o lsyo Aty gy Ligs
1 *
2 *
3 *
-4 *
3 %
6 *
'3 *
3 *
9 *

Table 10.7 Triggering environments in Brill’s transformation-based tagger. Ex-
amples: Line 5 refers to the triggering environment “Tag t/ occurs in one of the
three previous positions”; Line 9 refers to the triggering environment “Tag t/
occurs two positions earlier and tag t* occurs in the following position.”

Source tag Target tag Triggering environment

NN VB previous tag is TO

VBP VB one of the previous three tags is MD
JIR RBR next tag is JJ

VBP VB one of the previous two words is n't

Table 10.8 Examples of some transformations learned in transformation-based
tagging.

The learning algorithm

1 Cp := corpus with each word tagged with its most frequent tag
3 for k := 0 step 1 do

4 v := the transformation u; that minimizes E (u;(Ck))

6 if (E(Cx) — E(v(Ck))) < € then break fi

7 Ck+1 := V(Ci)

8 Tk+1 =V
9 end
10 Output sequence: Ti,..., Tk

Figure 10.3 The learning algorithm for transformation-based tagging.

refers to the tagging of the corpus in iteration i. E is the error rate.

Remarks

= Other machine learning methods could
be applied as well (e.g. decision trees,
rule learning ...)

Rule-based tagging

Oldest method, hand-crafted rules

Start by assigning all potential tags to each
word

Disambiguate using manually created rules

E.g. for the word that
o If

= The next word is an adjective, an adverb or a quantifier,
= And the further symbol is a sentence boundary
= And the previous word is not a consider-type verb

* Then erase all tags apart from the adverbial tag
* Else erase the adverbial tag

Learning PCFGs for parsing

= |Learning from complete data
Everything is “observed” “visible”, examples are parse trees
Cf. POS-tagging from tagged corpora
PCFGs : learning from tree banks,

Easy : just counting

= |Learning from incomplete data
Harder : The EM approach
The inside-outside algorithm
Learning from the sentences (no parse trees given)

A Penn Treebank tree (POS tags not shown)

((5 (NP-5B] The mowve)
(VP followed
(NP (NP a round)
(PP of
(NP (NP s1imilar increases)

(PP by
(NP other lenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SE] *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC in
(NP that market))))))
JJ

How does it work ?

= R:={r| ris a rule that occurs in one of
the parse trees in the corpus}
= Forall rulesrin R do

» Estimate probability label rule
* P(N->3S)=Count(N ->S)/ Count(N)

Conclusions

= Pos-tagging as an application of SNLP
= VMM, HMMs, TBL

= Statistical tagggers
Good results for positional languages (English)
Relatively cheap to build
Overfitting avoidance needed
Difficult to interpret (black box)
Linguistically naive

Conclusions

= Rule-based taggers
Very good results
Expensive to build
Presumably better for free word order languages
Interpretable

= Transformation based learning
A good compromise ?

* Tree bank grammars
Pretty effective (and easy to learn)
But hard to get the corpus.

