
{Probabilistic|Stochastic}

Context-Free Grammars (PCFGs)
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� The velocity of the seismic waves rises to . . .

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .
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PCFGs

A PCFG G consists of:

� A set of terminals, {wk}, k = 1, . . . , V

� A set of nonterminals, {Ni}, i = 1, . . . , n

� A designated start symbol, N1

� A set of rules, {Ni → ζj}, (where ζj is a sequence of

terminals and nonterminals)

� A corresponding set of probabilities on rules such that:

∀i
∑

j

P(Ni → ζj) = 1
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PCFG notation

Sentence: sequence of words w1 · · ·wm

wab: the subsequence wa · · ·wb

Niab: nonterminal Ni dominates wa · · ·wb

Nj

wa · · ·wb

Ni
∗
=⇒ ζ: Repeated derivation from Ni gives ζ.
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PCFG probability of a string

P(w1n) =
∑

t

P(w1n, t) t a parse of w1n

=
∑

{t :yield(t)=w1n}

P(t)
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A simple PCFG (in CNF)

S → NP VP 1.0 NP → NP PP 0.4

PP → P NP 1.0 NP → astronomers 0.1

VP → V NP 0.7 NP → ears 0.18

VP → VP PP 0.3 NP → saw 0.04

P → with 1.0 NP → stars 0.18

V → saw 1.0 NP → telescopes 0.1
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t1: S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears
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t2: S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears
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The two parse trees’ probabilities and the sen-

tence probability

P(t1) = 1.0× 0.1× 0.7× 1.0× 0.4

×0.18× 1.0× 1.0× 0.18

= 0.0009072

P(t2) = 1.0× 0.1× 0.3× 0.7× 1.0

×0.18× 1.0× 1.0× 0.18

= 0.0006804

P(w15) = P(t1)+ P(t2) = 0.0015876
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Assumptions of PCFGs

1. Place invariance (like time invariance in HMM):

∀k P(N
j
k(k+c) → ζ)is the same

2. Context-free:

P(N
j
kl → ζ|words outside wk . . . wl) = P(N

j
kl → ζ)

3. Ancestor-free:

P(N
j
kl → ζ|ancestor nodes of N

j
kl) = P(N

j
kl → ζ)
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Let the upper left index in iNj be an arbitrary identifying index for a

particular token of a nonterminal.

Then,

P













1S

2NP

the man

3VP

snores













= P(1S13 →
2NP12

3VP33,
2NP12 → the1 man2,

3VP33 → snor

= . . .

= P(S → NP VP)P(NP → the man)P(VP → snores)
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Some features of PCFGs

Reasons to use a PCFG, and some idea of their limitations:

� Partial solution for grammar ambiguity: a PCFG gives

some idea of the plausibility of a sentence.

� But not a very good idea, as not lexicalized.

� Better for grammar induction (Gold 1967)

� Robustness. (Admit everything with low probability.)
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Some features of PCFGs

� Gives a probabilistic language model for English.

� In practice, a PCFG is a worse language model for English

than a trigram model.

� Can hope to combine the strengths of a PCFG and a

trigram model.

� PCFG encodes certain biases, e.g., that smaller trees are

normally more probable.
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Improper (inconsistent) distributions

� S → rhubarb P =
1
3

S → S S P =
2
3

� rhubarb
1
3

rhubarb rhubarb
2
3 ×

1
3 ×

1
3 =

2
27

rhubarb rhubarb rhubarb
(

2
3

)2
×
(

1
3

)3
× 2 =

8
243

. . .

� P(L) =
1
3 +

2
27 +

8
243 + . . . =

1
2

� Improper/inconsistent distribution

� Not a problem if you estimate from parsed treebank: Chi

and Geman 1998).
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Questions for PCFGs

Just as for HMMs, there are three basic questions we wish

to answer:

� P(w1m|G)

� arg maxt P(t|w1m, G)

� Learning algorithm. Find G such that P(w1m|G) is max-

imized.
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Chomsky Normal Form grammars

We’ll do the case of Chomsky Normal Form grammars, which

only have rules of the form:

Ni → NjNk

Ni → wj

Any CFG can be represented by a weakly equivalent CFG in

Chomsky Normal Form. It’s straightforward to generalize

the algorithm (recall chart parsing).
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PCFG parameters

We’ll do the case of Chomsky Normal Form grammars, which

only have rules of the form:

Ni → NjNk

Ni → wj

The parameters of a CNF PCFG are:

P(Nj → NrNs|G) A n3 matrix of parameters

P(Nj → wk|G) An nt matrix of parameters

For j = 1, . . . , n,

∑

r ,s

P(Nj → NrNs)+
∑

k

P(Nj → wk) = 1
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Probabilistic Regular Grammar:

Ni → wjNk

Ni → wj

Start state, N1

HMM:

∑

w1n

P(w1n) = 1 ∀n

whereas in a PCFG or a PRG:

∑

w∈L

P(w) = 1
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Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG

or a PCFG. Implement via sink state.

A PRG

Start HMM Finish
Π

134



Comparison of HMMs (PRGs) and PCFGs

X: NP -→ N′ -→ N′ -→ N′ -→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box
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Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1), Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq, w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq, G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)
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Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β
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Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m, G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk, G)

= P(Nj → wk|G)
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Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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For all j,

βj(p, q) = P(wpq|N
j
pq, G)

=
∑

r ,s

q−1
∑

d=p

P(wpd, N
r
pd, w(d+1)q, N

s
(d+1)q|N

j
pq, G)

=
∑

r ,s

q−1
∑

d=p

P(Nrpd, N
s
(d+1)q|N

j
pq, G)

P(wpd|N
j
pq, N

r
pd, N

s
(d+1)q, G)

P(w(d+1)q|N
j
pq, N

r
pd, N

s
(d+1)q, wpd, G)

=
∑

r ,s

q−1
∑

d=p

P(Nrpd, N
s
(d+1)q|N

j
pq, G)

P(wpd|N
r
pd, G)P(w(d+1)q|N

s
(d+1)q, G)

=
∑

r ,s

q−1
∑

d=p

P(Nj → NrNs)βr(p, d)βs(d + 1, q)
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Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1), wk, w(k+1)m, N
j
kk|G)

=
∑

j

P(w1(k−1), N
j
kk, w(k+1)m|G)

×P(wk|w1(k−1), N
j
kk, w(k+1)n, G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j 6= 1

Inductive Case:

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

143



Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j 6= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm
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Outside probabilities – inductive case

A node N
j
pq might be the left or right branch of the parent node. We

sum over both possibilities.

N1

N
f
eq

N
g
e(p−1)

w1 · · ·we−1 we · · ·wp−1

N
j
pq

wp · · ·wq wq+1 · · ·wm
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Inductive Case:

αj(p, q) = [
∑

f ,g

m
∑

e=q+1

P(w1(p−1), w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)]

+[
∑

f ,g

p−1
∑

e=1

P(w1(p−1), w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)]

= [
∑

f ,gnej

m
∑

e=q+1

P(w1(p−1), w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)]+ [

∑

f ,g

p−1
∑

e=1

P(w1(e−1), w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1

)]

= [
∑

f ,g

m
∑

e=q+1

αf(p, e)P(N
f → Nj Ng)βg(q + 1, e)]

+[
∑

f ,g

p−1
∑

e=1

αf(e, q)P(N
f → Ng Nj)βg(e, p − 1)]
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Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq, w(q+1)m|G)P(wpq|N

j
pq, G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Training a PCFG

We construct an EM training algorithm, as for HMMs. We would like to

calculate how often each rule is used:

P̂(Nj → ζ) =
C(Nj → ζ)

∑

γ C(N
j → γ)

Have data ⇒ count; else work iteratively from expectations of current

model.

Consider:

αj(p, q)βj(p, q) = P(N1
∗
=⇒ w1m,N

j ∗
=⇒ wpq|G)

= P(N1
∗
=⇒ w1m|G)P(N

j ∗
=⇒ wpq|N

1
∗
=⇒ w1m, G)

We have already solved how to calculate P(N1 ⇒ w1m); let us call this

probability π . Then:

P(Nj
∗
=⇒ wpq|N

1 ∗
=⇒ w1m, G) =

αj(p, q)βj(p, q)

π
and

E(Nj is used in the derivation) =

m
∑

p=1

m
∑

q=p

αj(p, q)βj(p, q)

π
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In the case where we are not dealing with a preterminal, we substitute

the inductive definition of β, and ∀r , s, p > q:

P(Nj → Nr Ns ⇒ wpq|N
1 ⇒ w1n, G) =

∑q−1
d=pαj(p, q)P(N

j → Nr Ns)βr(p, d)βs(d + 1, q)

π

Therefore the expectation is:

E(Nj → Nr Ns, Nj used)

∑m−1

p=1

∑m
q=p+1

∑q−1

d=pαj(p, q)P(N
j → Nr Ns)βr(p, d)βs(d + 1, q)

π

Now for the maximization step, we want:

P(Nj → Nr Ns) =
E(Nj → Nr Ns , Nj used)

E(Nj used)
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Therefore, the reestimation formula, P̂ (Nj → Nr Ns) is the quotient:

P̂ (Nj → Nr Ns) =
∑m−1

p=1

∑m
q=p+1

∑q−1

d=pαj(p, q)P(N
j → Nr Ns)βr(p, d)βs(d + 1, q)

∑m
p=1

∑m
q=1αj(p, q)βj(p, q)

Similarly,

E(Nj → wk|N1 ⇒ w1m, G) =

∑m
h=1αj(h, h)P(N

j → wh, wh = w
k)

π

Therefore,

P̂(Nj → wk) =

∑m
h=1αj(h, h)P(N

j → wh, wh = w
k)

∑m
p=1

∑m
q=1αj(p, q)βj(p, q)

Inside-Outside algorithm: repeat this process until the estimated prob-

ability change is small.
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Multiple training instances: if we have training sentencesW = (W1, . . .Wω),

with Wi = (w1, . . . , wmi) and we let u and v bet the common subterms

from before:

ui(p, q, j, r , s) =

∑q−1
d=pαj(p, q)P(N

j → NrNs)βr(p, d)βs(d + 1, q)

P(N1 ⇒ Wi|G)

and

vi(p, q, j) =
αj(p, q)βj(p, q)

P(N1 ⇒ Wi|G)

Assuming the observations are independent, we can sum contributions:

P̂(Nj → Nr Ns) =

∑ω
i=1

∑mi−1
p=1

∑mi
q=p+1 ui(p, q, j, r , s)

∑ω
i=1

∑mi
p=1

∑mi
q=p vi(p, q, j)

and

P̂ (Nj → wk) =

∑ω
i=1

∑

{h:wh=w
k} vi(h, h, j)

∑ω
i=1

∑mi
p=1

∑mi
q=p vi(p, q, j)
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Problems with the Inside-Outside algorithm

1. Slow. Each iteration is O(m3n3), where m =
∑ω
i=1mi, and n is the

number of nonterminals in the grammar.

2. Local maxima are much more of a problem. Charniak reports that

on each trial a different local maximum was found. Use simulated

annealing? Restrict rules by initializing some parameters to zero?

Or HMM initialization? Reallocate nonterminals away from “greedy”

terminals?

3. Lari and Young suggest that you need many more nonterminals

available than are theoretically necessary to get good grammar

learning (about a threefold increase?). This compounds the first

problem.

4. There is no guarantee that the nonterminals that the algorithm

learns will have any satisfactory resemblance to the kinds of non-

terminals normally motivated in linguistic analysis (NP, VP, etc.).
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