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Motivations and Applications

 Part-of-speech tagging  / Sequence tagging
• The representative put chairs on the table
• AT       NN              VBD NNS  IN AT   NN
• AT       JJ                NN   VBZ   IN AT   NN

 Some tags :
• AT: article, NN: singular or mass noun, VBD: verb,

past tense, NNS: plural noun, IN: preposition, JJ:
adjective



Bioinformatics

 Durbin et al. Biological Sequence Analysis, Cambridge
University Press.

 Several applications, e.g. proteins
 From primary structure    ATCPLELLLD
 Infer secondary structure HHHBBBBBC..



Other Applications

 Speech Recognition: from
• From: Acoustic signals infer
• Infer:  Sentence

 Robotics:
• From Sensory readings
• Infer Trajectory / location …



What is a (Visible) Markov Model ?

 Graphical Model (Can be interpreted as Bayesian
Net)

 Circles indicate states
 Arrows indicate probabilistic dependencies between

states
 State depends only on the previous state
 “The past is independent of the future given the

present.”

 Recall from introduction to N-gramms !!!



Markov Model Formalization
SSS SS

 {S, Π, Α} 

 S : {s1…sN } are the values for the hidden states

Limited Horizon (Markov Assumption)

Time Invariant (Stationary)

Transition Matrix A

 P(Xt+1 = sk | X1,K,Xt ) = P(Xt+1 = sk | Xt )

= P(X2 = sk | X1)

aij = P(Xt+1 = s j | Xt = si )



Markov Model Formalization
SSS SS

{S, Π, Α} 

S : {s1…sN } are the values for the hidden states

Π = {πι} are the initial state probabilities

A = {aij} are the state transition probabilities

AAAA

π i = P(X1 = si )



What is the probability of a sequence
of states ?

 

P(X1,K,XT )
= P(X1)P(X2 | X1)P(X3 | X1,X2 )...P(XT | X1K,XT −1)
= P(X1)P(X2 | X1)P(X3 | X2 )...P(XT | XT −1)

= π X1
aXt Xt+1

t=1

T −1

∏



What is an HMM?

 Graphical Model
 Circles indicate states
 Arrows indicate probabilistic dependencies between

states

HMM = Hidden Markov Model



What is an HMM?

 Green circles are hidden states
 Dependent only on the previous state



What is an HMM?

 Purple nodes are observed states
 Dependent only on their corresponding hidden state
 The past is independent of the future given the

present



HMM Formalism

 {S, K, Π, Α, Β}

 S : {s1…sN } are the values for the hidden states
 K : {k1…kM } are the values for the observations

SSS

KKK

S

K

S

K



HMM Formalism

 {S, K, Π, Α, Β}

  Π = {πι} are the initial state probabilities
 A = {aij} are the state transition probabilities
 B = {bik} are the observation state probabilities
Note : sometimes one uses B = {bijk}

output then depends on previous state / transition as well

A

B

AAA

BB

SSS

KKK

S

K

S

K



The crazy soft drink machine

 Fig 9.2

B cola iced  tea lemonade
CP 0.6 0.1 0.3
IP 0.1 0.7 0.2



Probability of {lem,ice} ?

 Sum over all paths taken through HMM
 Start in CP
• 1 x 0.3 x 0.7 x 0.1  +
• 1 x 0.3 x 0.3 x 0.7



oTo1 otot-1 ot+1

HMMs and Bayesian Nets (1)

x1 xt-1 xt xt+1 xT

P(x1...xT ,o1...oT ) = P(x1)P(o1 | x1) P(xi+1 | xi
i=1

T −1

∏ ).P(oi+1 | xi+1)

= π x1
bx1o1

t=1

T −1

Πaxt xt+1bxt+1ot+1



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

HMM and Bayesian Nets (2)

Conditionally independent of Given 

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

 Compute the probability of a given
observation sequence

 Given an observation sequence, compute the
most likely hidden state sequence

 Given an observation sequence and set of
possible models, which model most closely
fits the data?



O = (o1...oT ), µ = (A,B,Π)
Compute P(O | µ)

oTo1 otot-1 ot+1

Given an observation sequence and a model,
compute the probability of the observation sequence

Decoding



Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

)|(),|()|,( µµµ XPXOPXOP =

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

)|(),|()|,( µµµ XPXOPXOP =

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

∑=
X

XPXOPOP )|(),|()|( µµµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



P(O | µ) = π x1
bx1o1

{x1 ...xT }
∑

t=1

T −1

Πaxt xt+1bxt+1ot+1

Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Complexity O(NT .2T )
E.g. N = 5,T = 100 gives 2.100.5100 ≈ 1072



  Dynamic
Programming



α i (t) = P(o1...ot , xt = i | µ)

Forward Procedure

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

• Special structure gives us an efficient solution
using dynamic programming.

• Intuition: Probability of the first t observations is
the same for all possible t+1 length state
sequences.

• Define:

α i (1) = P(o1, x1 = i | µ)
= π i .bio1
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Forward Procedure

)1( +tjα



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure
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oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure
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oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure
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= P(o1...ot , xt = i, xt+1 = j)
i=1...N
∑ P(ot+1 | xt+1 = j)

= P(o1...ot , xt+1 = j | xt = i)
i=1...N
∑ P(xt = i)P(ot+1 | xt+1 = j)

= P(o1...ot , xt = i)
i=1...N
∑ P(xt+1 = j | xt = i)P(ot+1 | xt+1 = j)

= α i (t)aijbjot+1
i=1...N
∑

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure



  Dynamic
Programming

α j (t +1) = α i (t)aijbjot+1
i=1...N
∑

Complexity O(N 2 .T )
E.g. N = 5,T = 100 gives ≈ 3000



βi (t) = P(ot+1...oT | xt = i)

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Backward Procedure

βi (T ) = 1

βi (t) = aijbiot+1β j (t +1)
j=1...N
∑

Probability of the rest
of the states given the
first state





oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Decoding Solution

∑
=

=
N

i
i TOP

1
)()|( αµ

∑
=

=
N

i
iiOP

1
)1()|( βπµ

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=

Forward Procedure

Backward Procedure

Combination



P(O,Xt = i | µ) = P(o1...ot ,Xt = i,ot+1...oT | µ)
= P(o1...ot ,Xt = i | µ).P(ot+1...oT | o1...ot ,Xt = i,µ)
= P(o1...ot ,Xt = i | µ).P(ot+1...oT | Xt = i,µ)
= α i (t).βi (t)

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=



oTo1 otot-1 ot+1

Best State Sequence

 Find the state sequence that best explains the observations

 Two approaches
• Individually most likely states
• Most likely sequence (Viterbi)



)|(maxarg OXP
X



Best State Sequence (1)

γ i (t) = P(Xt = i |O,µ)

=
P(Xt = i,O | µ)

P(O | µ)

=
α i (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 

X̂t = arg maxγ i (t)



oTo1 otot-1 ot+1

Best State Sequence (2)

 Find the state sequence that best explains the observations

 Viterbi algorithm

)|(maxarg OXP
X



oTo1 otot-1 ot+1

Viterbi Algorithm

),,...,...(max)( 1111... 11
ttttxxj ojxooxxPt

t

== −−
−

δ

The state sequence which maximizes the
probability of seeing the observations to time
t-1, landing in state j, and seeing the
observation at time t

x1 xt-1 j



oTo1 otot-1 ot+1

Viterbi Algorithm

),,...,...(max)( 1111... 11
ttttxxj ojxooxxPt

t

== −−
−

δ

1
)(max)1(

+
=+

tjoijiij batt δδ

1
)(maxarg)1(

+
=+

tjoiji
i

j batt δψ

Recursive
Computation

x1 xt-1 xt xt+1

Initialization
δ1(i) = π ibio1
ψ 1(i) = 0



oTo1 otot-1 ot+1

Viterbi Algorithm

X̂T = argmax
i

δi (T )

X̂t =ψ
X
^
t+1

(t +1)

P(X̂) = argmax
i

δi (T )

Compute the most
likely state sequence
by working
backwards

x1 xt-1 xt xt+1 xT



oTo1 otot-1 ot+1

HMMs and Bayesian Nets (1)

x1 xt-1 xt xt+1 xT

P(x1...xT ,o1...oT ) = P(x1)P(o1 | x1) P(xi+1 | xi
i=1

T −1

∏ ).P(oi+1 | xi+1)

= π x1
bx1o1

t=1

T −1

Πaxt xt+1bxt+1ot+1



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

HMM and Bayesian Nets (2)

Conditionally independent of Given 

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

 Compute the probability of a given
observation sequence

 Given an observation sequence, compute the
most likely hidden state sequence

 Given an observation sequence and set of
possible models, which model most closely
fits the data?



  Dynamic
Programming



oTo1 otot-1 ot+1

Parameter Estimation

• Given an observation sequence, find the model
that is most likely to produce that sequence.

• No analytic method
• Given a model and observation sequence, update

the model parameters to better fit the observations.

A

B

AAA

BBB B

argmax
µ

P(Otraining | µ)



α i (t) = P(o1...ot , xt = i | µ)

βi (t) = P(ot+1...oT | xt = i)

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=

pt (i, j) = P(Xt = i,Xt+1 = j |O,µ)

=
P(Xt = i,Xt+1 = j,O | µ)

P(O | µ)



oTo1 otot-1 ot+1

Parameter Estimation

A

B

AAA

BBB B

pt (i, j) =
α i (t)aijbjot+1β j (t +1)

αm (t)βm (t)
m=1...N
∑

Probability of
traversing an arc

∑
=

=
Nj
ti jipt

...1
),()(γ Probability of

being in state i



oTo1 otot-1 ot+1

Parameter Estimation

A

B

AAA

BBB B

π̂i = γ i (1)

Now we can
compute the new
estimates of the
model parameters.

âij =
pt (i, j)t=1

T −1
∑

γ i (t)t=1

T −1
∑

b̂ik =
γ i (t){t:ot =k}

∑
γ i (t)t=1

T
∑



Instance of Expectation Maximization

 We have that

 We may get stuck in local maximum (or
even saddle point)

 Nevertheless, Baum-Welch usually
effective

P(O | µ̂) ≥ P(O | µ)



Some Variants

 So far, ergodic models
• All states are connected
• Not always wanted

 Epsilon or null-transitions
• Not all states/transitions emit output symbols

 Parameter tying
• Assuming that certain parameters are shared
• Reduces the number of parameters that have to be

estimated
 Logical HMMs (Kersting, De Raedt, Raiko)

• Working with structured states and observation symbols
 Working with log probabilities and addition instead of

multiplication of probabilities (typically done)



oTo1 otot-1 ot+1

The Most Important Thing

A

B

AAA

BBB B

We can use the special structure of this
model to do a lot of neat math and solve
problems that are otherwise not solvable.



HMM’s from an Agent Perspective

 AI: a modern approach
• AI is the study of rational agents
• Third part by Wolfram Burgard on

Reinforcement learning
 HMMs can also be used here
• Typically one is interested in P(state)



Example

 Possible states
• {snow, no snow}

 Observations
• {skis , no skis }

 Questions
• Was there snow the day before yesterday (given a

sequence of observations) ?
• Is there now snow (given a sequence of

observations) ?
• Will there be snow tomorrow, given a sequence of

observations? Next week ?



HMM and Agents

 Question

• Case 1 : often called smoothing
 t  < T  : see last time

♣Only part of trellis between t and T needed

γ i (t) = P(Xt = i |O,µ)

=
αi (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 



HMM and Agents

• Case 2 : often called filtering
 t=  T : last time

♣Can we make it recursive ? I.e go from T-1 to T ?

γ i (t) = P(Xt = i |O,µ)

=
αi (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 



HMM and Agents

• Case 2 : often called filtering
 t=  T : last time

λi (T ) = P(XT = i | o1...oT ,µ)
= γ i (T )

=
αi (T ).βi (T )

j=1

n

∑ α j (T ).β j (T )

=
αi (T )

j=1

n

∑ α j (T )



HMM and Agents

• Case 3 : often called prediction
 t=  T+1 (or T+K) not yet  seen

 Interesting : recursive
 Easily extended towards k > 1



Extensions

 Use Dynamic Bayesian networks
instead of HMMs
• One state corresponds to a Bayesian Net
• Observations can become more complex

 Involve actions of the agent as well
• Cf. Wolfram Burgard’s Part


