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Motivations and Applications

 Part-of-speech tagging  / Sequence tagging
• The representative put chairs on the table
• AT       NN              VBD NNS  IN AT   NN
• AT       JJ                NN   VBZ   IN AT   NN

 Some tags :
• AT: article, NN: singular or mass noun, VBD: verb,

past tense, NNS: plural noun, IN: preposition, JJ:
adjective



Bioinformatics

 Durbin et al. Biological Sequence Analysis, Cambridge
University Press.

 Several applications, e.g. proteins
 From primary structure    ATCPLELLLD
 Infer secondary structure HHHBBBBBC..



Other Applications

 Speech Recognition: from
• From: Acoustic signals infer
• Infer:  Sentence

 Robotics:
• From Sensory readings
• Infer Trajectory / location …



What is a (Visible) Markov Model ?

 Graphical Model (Can be interpreted as Bayesian
Net)

 Circles indicate states
 Arrows indicate probabilistic dependencies between

states
 State depends only on the previous state
 “The past is independent of the future given the

present.”

 Recall from introduction to N-gramms !!!



Markov Model Formalization
SSS SS

 {S, Π, Α} 

 S : {s1…sN } are the values for the hidden states

Limited Horizon (Markov Assumption)

Time Invariant (Stationary)

Transition Matrix A

 P(Xt+1 = sk | X1,K,Xt ) = P(Xt+1 = sk | Xt )

= P(X2 = sk | X1)

aij = P(Xt+1 = s j | Xt = si )



Markov Model Formalization
SSS SS

{S, Π, Α} 

S : {s1…sN } are the values for the hidden states

Π = {πι} are the initial state probabilities

A = {aij} are the state transition probabilities

AAAA

π i = P(X1 = si )



What is the probability of a sequence
of states ?

 

P(X1,K,XT )
= P(X1)P(X2 | X1)P(X3 | X1,X2 )...P(XT | X1K,XT −1)
= P(X1)P(X2 | X1)P(X3 | X2 )...P(XT | XT −1)

= π X1
aXt Xt+1

t=1

T −1

∏



What is an HMM?

 Graphical Model
 Circles indicate states
 Arrows indicate probabilistic dependencies between

states

HMM = Hidden Markov Model



What is an HMM?

 Green circles are hidden states
 Dependent only on the previous state



What is an HMM?

 Purple nodes are observed states
 Dependent only on their corresponding hidden state
 The past is independent of the future given the

present



HMM Formalism

 {S, K, Π, Α, Β}

 S : {s1…sN } are the values for the hidden states
 K : {k1…kM } are the values for the observations

SSS

KKK

S

K

S

K



HMM Formalism

 {S, K, Π, Α, Β}

  Π = {πι} are the initial state probabilities
 A = {aij} are the state transition probabilities
 B = {bik} are the observation state probabilities
Note : sometimes one uses B = {bijk}

output then depends on previous state / transition as well

A

B

AAA

BB

SSS

KKK

S

K

S

K



The crazy soft drink machine

 Fig 9.2

B cola iced  tea lemonade
CP 0.6 0.1 0.3
IP 0.1 0.7 0.2



Probability of {lem,ice} ?

 Sum over all paths taken through HMM
 Start in CP
• 1 x 0.3 x 0.7 x 0.1  +
• 1 x 0.3 x 0.3 x 0.7



oTo1 otot-1 ot+1

HMMs and Bayesian Nets (1)

x1 xt-1 xt xt+1 xT

P(x1...xT ,o1...oT ) = P(x1)P(o1 | x1) P(xi+1 | xi
i=1

T −1

∏ ).P(oi+1 | xi+1)

= π x1
bx1o1

t=1

T −1

Πaxt xt+1bxt+1ot+1



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

HMM and Bayesian Nets (2)

Conditionally independent of Given 

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

 Compute the probability of a given
observation sequence

 Given an observation sequence, compute the
most likely hidden state sequence

 Given an observation sequence and set of
possible models, which model most closely
fits the data?



O = (o1...oT ), µ = (A,B,Π)
Compute P(O | µ)

oTo1 otot-1 ot+1

Given an observation sequence and a model,
compute the probability of the observation sequence

Decoding



Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

)|(),|()|,( µµµ XPXOPXOP =

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



Decoding

)|(),|()|,( µµµ XPXOPXOP =

TToxoxox bbbXOP ...),|(
2211

=µ

TT xxxxxxx aaaXP
132211

...)|(
−

=πµ

∑=
X

XPXOPOP )|(),|()|( µµµ

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1



P(O | µ) = π x1
bx1o1

{x1 ...xT }
∑

t=1

T −1

Πaxt xt+1bxt+1ot+1

Decoding

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Complexity O(NT .2T )
E.g. N = 5,T = 100 gives 2.100.5100 ≈ 1072



  Dynamic
Programming



α i (t) = P(o1...ot , xt = i | µ)

Forward Procedure

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

• Special structure gives us an efficient solution
using dynamic programming.

• Intuition: Probability of the first t observations is
the same for all possible t+1 length state
sequences.

• Define:

α i (1) = P(o1, x1 = i | µ)
= π i .bio1
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Forward Procedure

)1( +tjα



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure

)1( +tjα

)|(),...(
)()|()|...(

)()|...(
),...(

1111

11111

1111

111

jxoPjxooP
jxPjxoPjxooP

jxPjxooP
jxooP

tttt

ttttt

ttt

tt

===

====

===

==

+++

++++

+++

++



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure
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oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure
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= P(o1...ot , xt = i, xt+1 = j)
i=1...N
∑ P(ot+1 | xt+1 = j)

= P(o1...ot , xt+1 = j | xt = i)
i=1...N
∑ P(xt = i)P(ot+1 | xt+1 = j)

= P(o1...ot , xt = i)
i=1...N
∑ P(xt+1 = j | xt = i)P(ot+1 | xt+1 = j)

= α i (t)aijbjot+1
i=1...N
∑

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Forward Procedure



  Dynamic
Programming

α j (t +1) = α i (t)aijbjot+1
i=1...N
∑

Complexity O(N 2 .T )
E.g. N = 5,T = 100 gives ≈ 3000



βi (t) = P(ot+1...oT | xt = i)

oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Backward Procedure

βi (T ) = 1

βi (t) = aijbiot+1β j (t +1)
j=1...N
∑

Probability of the rest
of the states given the
first state





oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

Decoding Solution

∑
=

=
N

i
i TOP

1
)()|( αµ

∑
=

=
N

i
iiOP

1
)1()|( βπµ

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=

Forward Procedure

Backward Procedure

Combination



P(O,Xt = i | µ) = P(o1...ot ,Xt = i,ot+1...oT | µ)
= P(o1...ot ,Xt = i | µ).P(ot+1...oT | o1...ot ,Xt = i,µ)
= P(o1...ot ,Xt = i | µ).P(ot+1...oT | Xt = i,µ)
= α i (t).βi (t)

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=



oTo1 otot-1 ot+1

Best State Sequence

 Find the state sequence that best explains the observations

 Two approaches
• Individually most likely states
• Most likely sequence (Viterbi)



)|(maxarg OXP
X



Best State Sequence (1)

γ i (t) = P(Xt = i |O,µ)

=
P(Xt = i,O | µ)

P(O | µ)

=
α i (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 

X̂t = arg maxγ i (t)



oTo1 otot-1 ot+1

Best State Sequence (2)

 Find the state sequence that best explains the observations

 Viterbi algorithm

)|(maxarg OXP
X



oTo1 otot-1 ot+1

Viterbi Algorithm

),,...,...(max)( 1111... 11
ttttxxj ojxooxxPt

t

== −−
−

δ

The state sequence which maximizes the
probability of seeing the observations to time
t-1, landing in state j, and seeing the
observation at time t

x1 xt-1 j



oTo1 otot-1 ot+1

Viterbi Algorithm

),,...,...(max)( 1111... 11
ttttxxj ojxooxxPt

t

== −−
−

δ

1
)(max)1(

+
=+

tjoijiij batt δδ

1
)(maxarg)1(

+
=+

tjoiji
i

j batt δψ

Recursive
Computation

x1 xt-1 xt xt+1

Initialization
δ1(i) = π ibio1
ψ 1(i) = 0



oTo1 otot-1 ot+1

Viterbi Algorithm

X̂T = argmax
i

δi (T )

X̂t =ψ
X
^
t+1

(t +1)

P(X̂) = argmax
i

δi (T )

Compute the most
likely state sequence
by working
backwards

x1 xt-1 xt xt+1 xT



oTo1 otot-1 ot+1

HMMs and Bayesian Nets (1)

x1 xt-1 xt xt+1 xT

P(x1...xT ,o1...oT ) = P(x1)P(o1 | x1) P(xi+1 | xi
i=1

T −1

∏ ).P(oi+1 | xi+1)

= π x1
bx1o1

t=1

T −1

Πaxt xt+1bxt+1ot+1



oTo1 otot-1 ot+1

x1 xt+1 xTxtxt-1

HMM and Bayesian Nets (2)

Conditionally independent of Given 

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

 Compute the probability of a given
observation sequence

 Given an observation sequence, compute the
most likely hidden state sequence

 Given an observation sequence and set of
possible models, which model most closely
fits the data?



  Dynamic
Programming



oTo1 otot-1 ot+1

Parameter Estimation

• Given an observation sequence, find the model
that is most likely to produce that sequence.

• No analytic method
• Given a model and observation sequence, update

the model parameters to better fit the observations.

A

B

AAA

BBB B

argmax
µ

P(Otraining | µ)



α i (t) = P(o1...ot , xt = i | µ)

βi (t) = P(ot+1...oT | xt = i)

)()()|(
1

ttOP i

N

i
i βαµ ∑

=

=

pt (i, j) = P(Xt = i,Xt+1 = j |O,µ)

=
P(Xt = i,Xt+1 = j,O | µ)

P(O | µ)



oTo1 otot-1 ot+1

Parameter Estimation

A

B

AAA

BBB B

pt (i, j) =
α i (t)aijbjot+1β j (t +1)

αm (t)βm (t)
m=1...N
∑

Probability of
traversing an arc

∑
=

=
Nj
ti jipt

...1
),()(γ Probability of

being in state i



oTo1 otot-1 ot+1

Parameter Estimation

A

B

AAA

BBB B

π̂i = γ i (1)

Now we can
compute the new
estimates of the
model parameters.

âij =
pt (i, j)t=1

T −1
∑

γ i (t)t=1

T −1
∑

b̂ik =
γ i (t){t:ot =k}

∑
γ i (t)t=1

T
∑



Instance of Expectation Maximization

 We have that

 We may get stuck in local maximum (or
even saddle point)

 Nevertheless, Baum-Welch usually
effective

P(O | µ̂) ≥ P(O | µ)



Some Variants

 So far, ergodic models
• All states are connected
• Not always wanted

 Epsilon or null-transitions
• Not all states/transitions emit output symbols

 Parameter tying
• Assuming that certain parameters are shared
• Reduces the number of parameters that have to be

estimated
 Logical HMMs (Kersting, De Raedt, Raiko)

• Working with structured states and observation symbols
 Working with log probabilities and addition instead of

multiplication of probabilities (typically done)



oTo1 otot-1 ot+1

The Most Important Thing

A

B

AAA

BBB B

We can use the special structure of this
model to do a lot of neat math and solve
problems that are otherwise not solvable.



HMM’s from an Agent Perspective

 AI: a modern approach
• AI is the study of rational agents
• Third part by Wolfram Burgard on

Reinforcement learning
 HMMs can also be used here
• Typically one is interested in P(state)



Example

 Possible states
• {snow, no snow}

 Observations
• {skis , no skis }

 Questions
• Was there snow the day before yesterday (given a

sequence of observations) ?
• Is there now snow (given a sequence of

observations) ?
• Will there be snow tomorrow, given a sequence of

observations? Next week ?



HMM and Agents

 Question

• Case 1 : often called smoothing
 t  < T  : see last time

♣Only part of trellis between t and T needed

γ i (t) = P(Xt = i |O,µ)

=
αi (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 



HMM and Agents

• Case 2 : often called filtering
 t=  T : last time

♣Can we make it recursive ? I.e go from T-1 to T ?

γ i (t) = P(Xt = i |O,µ)

=
αi (t).βi (t)

j=1

n

∑ α j (t).β j (t)

Most likely state at each point in time 



HMM and Agents

• Case 2 : often called filtering
 t=  T : last time

λi (T ) = P(XT = i | o1...oT ,µ)
= γ i (T )

=
αi (T ).βi (T )

j=1

n

∑ α j (T ).β j (T )

=
αi (T )

j=1

n

∑ α j (T )



HMM and Agents

• Case 3 : often called prediction
 t=  T+1 (or T+K) not yet  seen

 Interesting : recursive
 Easily extended towards k > 1



Extensions

 Use Dynamic Bayesian networks
instead of HMMs
• One state corresponds to a Bayesian Net
• Observations can become more complex

 Involve actions of the agent as well
• Cf. Wolfram Burgard’s Part


