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= Markov Models
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* Three problems - three algorithms

= Decoding
= Viterbi
= Baum-Welsch

= Next chapter
* Application to part-of-speech-tagging (POS-tagging)
Largely chapter 9 of Statistical NLP, Manning and

Schuetze, or Rabiner, A tutorial on HMMs and selected
applications in Speech Recognition, Proc. IEEE



Motivations and Applications

= Part-of-speech tagging / Sequence tagging
The representative put chairs on the table
AT NN VBD NNS IN AT NN
AT JJ NN VBZ INAT NN

= Some tags:

AT: article, NN: singular or mass noun, VBD: verb,
past tense, NNS: plural noun, IN: preposition, JJ:
adjective



Bioinformatics

Durbin et al. Biological Sequence Analysis, Cambridge
University Press.

Several applications, e.g. proteins
From primary structure ATCPLELLLD
Infer secondary structure HHHBBBBBC..




Other Applications

= Speech Recognition: from
From: Acoustic signals infer
Infer: Sentence

= Robotics:
From Sensory readings
Infer Trajectory / location ...



What is a (Visible) Markov Model ?

o 0000

Graphical Model (Can be interpreted as Bayesian
Net)

Circles indicate states

Arrows indicate probabilistic dependencies between
states

State depends only on the previous state

“The past is independent of the future given the
present.”

Recall from introduction to N-gramms !!!



Markov Model Formalization

= {S I, A}
= S:{s,...s\} are the values for the hidden states

Limited Horizon (Markov Assumption)

PX,, =s1X,...X)=P(X,  =s1X)

+1 +1

Time Invariant (Stationary) = P(X, =5, | X,)

Transition Matrix A a; = P(X,, = S X, =5,)

+1



Markov Model Formalization
ST e e

={S, I1, A}
=S : {s,...Sy} are the values for the hidden states

"1 = {x } are the initial state probabilities

7w, =P(X, =s,)

"A = {a;} are the state transition probabilities



What is the probability of a sequence
of states ?

P(X,,...X,)
= P(X)P(X, | X )P(X, 1 X, X,).P(X, | X, ..., X, )
= P(X)P(X, | X )P(X,| X,)..P(X, | X, )

T-1

- JTXl | | aXtXt+1

t=1



What is an HMM?
= Graphical Model

= Circles indicate states

= Arrows indicate probabilistic dependencies between
states

HMM = Hidden Markov Model



What is an HMM?

= Green circles are hidden states
= Dependent only on the previous state



What is an HMM?

?H

O O O O O

= Purple nodes are observed states
= Dependent only on their corresponding hidden state

= The past is independent of the future given the
present



HMM Formalism

= {S, K, I1, A, B}
= S:{s,...sy} are the values for the hidden states
= K:{k,4...ky } are the values for the observations



HMM Formalism

= {S, K, 11, A, B}
= [II={x} are the initial state probabilities
= A ={a;} are the state transition probabilities
= B={b,} are the observation state probabilities
Note : sometimes one uses B = {b;}
output then depends on previous state / transition as well



The crazy soft drink machine

0.3
Iced Tea =
PreL. 7

start

0.7

Figure 9.2 The crazy soft drink machine, showing the states of the machine
and the state transition probabilities.

B cola iced tea lemonade
CP 0.6 0.1 0.3
IP 0.1 0.7 0.2



Probability of {lem,ice} ?

= Sum over all paths taken through HMM

= Startin CP
* 1x0.3x0.7x0.1 +
* 1x0.3x0.3x0.7



HMMs and Bayesian Nets (1)

_>
(o) ) (o)l (o
P(x,..x.,0,..0.) = P(x,)P(o, le)ﬁ P(x.,, 1x).P(o, |x,,)

T-1
=7 b ||a b
X1 X101 " XeXer1l Xee10r41
t=



HMM and Bayesian Nets (2)
@ 0o @
Do @ e @

Conditionally independent of Given

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

= Compute the probability of a given
observation sequence

= Given an observation sequence, compute the
most likely hidden state sequence

= Given an observation sequence and set of
possible models, which model most closely
fits the data?



Decoding

G1ven an observation sequence and a model,
compute the probability of the observation sequence

O =(0,...0;), u=(A,B,II)
Compute P(O | u)



Decoding

¢ sos o

P(O|X,u)=b,,b,,




Decoding

¢ boe s

P(O|X,u)=b_b,,

P(X |u)= ﬂxlaxlxzaxz,% a




Decoding

I I
(20 @ (o0

P(O|X,u)=b_b,,

P(X|w) =7 a, a,, ..a,

PO, X | u) = P(O\X WP(X | )




Decoding

ORI

P(X|w)=7,a,, a,, a, .
P(O.X | 1) = P(O] X.1)P(X | 1

P(O|u)=") P(O]| X, u)P(X | )




Decoding

e 6o o

T-1
P(O | tl/l“) = E 'ﬂ:xlbxlol Haxtx;+1bxt+10t+1
{x;..x7 } t=1




(a)

a,li) @y 4 qli)

OBSERVATION,

Fig. 4. (a) lllustration of the sequence of operations
required for the computation of the forward variable «, , ,(j ).
(b) Implementation of the computation of «,(/) in terms of
a lattice of observations t, and states .

Dynamic
Programming



Forward Procedure

* Special structure gives us an efficient solution
using dynamic programming.
 Intuition: Probability of the

the same for all possible #+1 1
sequences.

* Define: | .(¢) = P(0,...0,,x, =il u)




Forward Procedure

a (t+1)

= P(Ol"'0t+19 t+1 ])

= P(Ol... 41 |xt+1 )P(XHI = ])
= P(Ol... |xt+1 = )P(0¢+1 |xt+l = j)P(le = ])
= P(Ol...Ot,le j)P(OHI |xt+1 = ])



Forward Procedure

a (t+1)

= P(Ol"'0t+19 t+1 ])

= P(Ol... 41 |Xt+1 )P(xt+l = ])

= P(Ol'” |xt+1 = ])P(OHl |'xt+l = j)P(le = ])
= P(Ol...Ot,le j)P(OHI |xt+1 = ])



Forward Procedure

a (t+1)

= P(0,..0,,, X, = ])
=P(01... 41 |xt+1 )P(XHI — ])

= P(Ol"' | Xip1 = ])P(Ot+1 | Xee1 = j)P(le - ])

= P(Ol...Ot,le j)P(OHI | xt+1 = ])



Forward Procedure

a (t+1)

= P(Ol"'0t+19 t+1 ])
= P(0,..0,,, | x,,, = J)P(x,,, = J)
= P(Ol'” |xt+1 = ])P(OHl |'xt+l = j)P(le = ])

= P(Ol---otaxtﬂ j)P(0t+1 | Xl = J)




Forward Procedure

a

= P(01°°°0t9'xt = iﬁxt+1 = j)P(0t+1 |xt+1 = ])

i=l..N

= P(Ol"°0t9xt+l = ] | xt = Z)P(xt = i)P(OHI |‘xt+1 = ])

i=l..N

= P(Ol...Ot,xt = i)P(xt+1 = ] | Xt = i)P(OHI |xt+1 = J)

i=l..N

= .zai(t)a

b

Yy JOrn




Forward Procedure

a

= P(o,...0,,x, =i,x,,, = ))P(o,,, | x,,, =)

i=l..N

= P(Ol'“Ot?‘le = J | 'xt = Z)P(Xt = i)P(OHI |xt+1 = ])

i=l..N

= P(Ol...Ot,xt = i)P(xt+1 = ] | Xt = i)P(OHI |xt+1 = J)

i=l..N

= .zai(t)a

b

Yy JOrn




Forward Procedure

a

= P(o,...0,,x, =i,x,,, = ))P(o,,, | x,,, =)

i=l..N

= P(Ol"°0t9xt+l = ] | xt = Z)P(xt = i)P(OHI |‘xt+1 = ])

i=l..N

= ) P(o,..0,,x, =i)P(x,,,=j|x, =i)P(o,, |x,, =]J)

i=l..N

i=l..N

= 2 of (t)aijbj()m




Forward Procedure

a

—>

= 2 P(Ol...Ot,xt = iaxt+1 = j)P(0t+1 I')Ct+1 = -])

1..N
= E P(o,...0,x,,, = jlx, =0)P(x, =1)P(o,,, | x,,, = J)
i=1..N

= E P(Ol...Ot,Xt = i)P(xt+1 = jlx; = i)P(0t+1 Ixt+1 = ])

i=1...N

- E a,(t)ab,,,
i=1..N




Dynamic
Programming

(at

ot [ YA
[acliod

1
2 3

OBSERVATION,

Fig. 4. (a) lllustration of the sequence of operations
required for the computation of the forward variable o, , 4(j ).
(b) Implementation of the computation of (i) in terms of
a lattice of observations t, and states i.



Backward Procedure

.

ﬁi (1) =1
p.(t)=P(o,,,...0;

|l x =1)

4

B)="Y apb, B+1)

j=1..N

Probability of the rest
of the states given the
first state




r
Byti)

t+ 1
By 44t

Fig. 5. lllustration of the sequence of operations required
for the computation of the backward variable 3,(i).



Decoding Solution

‘

PO u)= (x (P (1) Combination




PO,X =ilu)=P(o,...0,,X, =1,0,,,...0, | 1)
= P(o,...0,,X, =ilu).P(o
= P(o,...0,,X, =ilu).P(o
= a;(1).5;(1)

100100, X, =1,u)

Lo | X =1,u)

t+1°

P(0| xu) = Eai(t)ﬁi(t)



Best State Sequence

* Find the state sequence that best explains the observations

= Two approaches
* Individually most likely states
* Most likely sequence (Viterbi)

arg max P(X |0)



Best State Sequence (1)

y,(t)=P(X,=il0,u)
P(X, =i,0lu)
~ POlw
o (1).B,(1)

PEAOY:HG

Most likely state at each point in time

VoS

X, =argmaxy (f)



Best State Sequence (2)

* Find the state sequence that best explains the observations

= Viterbi algorithm

arg max P(X |0)



Viterbi Algorithm

5(1) maXP(xl X, 1,0,...0,_1,X, = J,0,)

Xy

The state sequence which maximizes the
probability of seeing the observations to time
t-1, landing 1n state j, and seeing the
observation at time t




Viterbi Algorithm

e 646

5(0 maXP(x1 X, 1,0,...0,_1,X, = J,0,)

S |

0, (t+1)= maXcS (a.b.

I~ JO

P +1) = arg max 0,(t)ab

= JOu




Viterbi Algorithm

Xr = argmax o,(T")

X =y. (t+1)

t
Xt+1

P()A() = argmax 0,(T")

Compute the most
likely state sequence

by working
backwards




HMMs and Bayesian Nets (1)

_>
(o) ) (o)l (o
P(x,..x.,0,..0.) = P(x,)P(o, le)ﬁ P(x.,, 1x).P(o, |x,,)

T-1
=7 b ||a b
X1 X101 " XeXer1l Xee10r41
t=



HMM and Bayesian Nets (2)
@ 0o @
Do @ e @

Conditionally independent of Given

Because of d-separation

“The past is independent of the future given the present.”



Inference in an HMM

= Compute the probability of a given
observation sequence

= Given an observation sequence, compute the
most likely hidden state sequence

= Given an observation sequence and set of
possible models, which model most closely
fits the data?



(a)

a,li) @y 4 qli)

OBSERVATION,

Fig. 4. (a) lllustration of the sequence of operations
required for the computation of the forward variable «, , ,(j ).
(b) Implementation of the computation of «,(/) in terms of
a lattice of observations t, and states .

Dynamic
Programming



Parameter Estimation

* (Given an observation sequence, find the model
that 1s most likely to produce that sequence.

« No analytic method argmax P(O,,;,,, | )

u
* Given a model and observation sequence, update

the model parameters to better fit the observations.



o.(t)=P(o,...0,,x, =il u)

T N p.(t)=P(o,, ..o lx =1)
/ \ :

- - PO| 1) = Y o, (0B, (1)
Eo S o BT, i=1

Figure 9.7 The probability of traversing an arc. Given an observation sequence
and a model, we can work out the probability that the Markov process went from
tate s; to s; at time (.

p(,j)=PX, =i,X, =710, u)
_ P(Xt — i’Xt+1 = ]90 | tl/l’)
POl )




Parameter Estimation

B
p,(,))= by, B +1) Probability of
E a, @®)p, ) traversing an arc
m=1...N

Y. () = .Ept(i,j)

Probability of
being in state i




Parameter Estimation

Now we can
compute the new
estimates of the
model parameters.




Instance of Expectation Maximization

= \We have that

P(Olw)=PO!u)

= We may get stuck in local maximum (or
even saddle point)

= Nevertheless, Baum-Welch usually
effective



Some Variants

So far, ergodic models
» All states are connected
* Not always wanted

Epsilon or null-transitions
* Not all states/transitions emit output symbols
Parameter tying

* Assuming that certain parameters are shared

* Reduces the number of parameters that have to be
estimated

Logical HMMs (Kersting, De Raedt, Raiko)
* Working with structured states and observation symbols

Working with log probabilities and addition instead of
multiplication of probabilities (typically done)



The Most Important Thing

We can use the special structure of this
model to do a lot of neat math and solve
problems that are otherwise not solvable.




HMM's from an Agent Perspective

= Al: a modern approach
Al is the study of rational agents

Third part by Wolfram Burgard on
Reinforcement learning

= HMMs can also be used here
Typically one is interested in P(state)

P(X; = iloy, ...,or)



Example

= Possible states
{snow, no snow}

= Observations
{skis , no skis }
= Questions

Was there snow the day before yesterday (given a
sequence of observations) ?

Is there now snow (given a sequence of
observations) ?

Will there be snow tomorrow, given a sequence of
observations? Next week ?



HMM and Agents

= Question P(Xt = ?2‘01, ...,OT)

Case 1 : often called smoothing
=t <T :seelasttime

7,(t)=P(X, =il0,u)
a,(1).B,(1)
PRAGY:HO

=1

Most likely state at each point in time

% Only part of trellis between t and T needed



P(X; = iloy,...,or)

Case 2 : often called filtering
= = T :last time

)/l-(t) = P(Xt =110,u)
o, (1).p,(t)

n

Y o))

Jj=1

Most likely state at each point in time

% Can we make it recursive ? Legofrom T-1to T ?



P(X; = iloy,...,or)

Case 2 : often called filtering
= t= T:last time
A(T)=P(X, =ilo,..0or,u)
=Yi (T)
a,(T).p,(T)

n

Y a,(T)p,(T)

j=1

o)

3 a,T)

j=1




HMM and Agents
P(X; = iloy, ...,0r)

Case 3 : often called prediction
= t= T+1 (or T+K) not yet seen

= Interesting : recursive
= Easily extended towards k > 1



Extensions

= Use Dynamic Bayesian networks
instead of HMMs

* One state corresponds to a Bayesian Net

» Observations can become more complex
= |nvolve actions of the agent as well

» Cf. Wolfram Burgard’s Part



