Advanced Artificial Intelligence

Part II. Statistical NLP

Hidden Markov Models

Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Most slides taken (or adapted) from David Meir Blei, Figures from Manning and Schuetze and from Rabiner

Contents

- Markov Models
- Hidden Markov Models
- Three problems - three algorithms
- Decoding
- Viterbi
- Baum-Welsch
- Next chapter
- Application to part-of-speech-tagging (POS-tagging)

Largely chapter 9 of Statistical NLP, Manning and Schuetze, or Rabiner, A tutorial on HMMs and selected applications in Speech Recognition, Proc. IEEE

Motivations and Applications

- Part-of-speech tagging / Sequence tagging
- The representative put chairs on the table
- AT NN VBD NNS IN AT NN
- AT JJ NN VBZ IN AT NN
- Some tags :
- AT: article, NN: singular or mass noun, VBD: verb, past tense, NNS: plural noun, IN: preposition, JJ: adjective

Bioinformatics

- Durbin et al. Biological Sequence Analysis, Cambridge University Press.
- Several applications, e.g. proteins
- From primary structure ATCPLELLLD
- Infer secondary structure HHHBBBBBC..

Other Applications

- Speech Recognition: from
- From: Acoustic signals infer
- Infer: Sentence
- Robotics:
- From Sensory readings
- Infer Trajectory / location ...

What is a (Visible) Markov Model ?

- Graphical Model (Can be interpreted as Bayesian Net)
- Circles indicate states
- Arrows indicate probabilistic dependencies between states
- State depends only on the previous state
- "The past is independent of the future given the present."
- Recall from introduction to N-gramms !!!

Markov Model Formalization

- $\{S, \Pi, A\}$
- $S:\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{N}}\right\}$ are the values for the hidden states

Limited Horizon (Markov Assumption)

$$
P\left(X_{t+1}=s_{k} \mid X_{1}, \ldots, X_{t}\right)=P\left(X_{t+1}=s_{k} \mid X_{t}\right)
$$

Time Invariant (Stationary) $\quad=P\left(X_{2}=s_{k} \mid X_{1}\right)$
Transition Matrix A

$$
a_{i j}=P\left(X_{t+1}=s_{j} \mid X_{t}=s_{i}\right)
$$

Markov Model Formalization

- $\{S, \Pi, A\}$
$-S:\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{N}}\right\}$ are the values for the hidden states
$-\Pi=\left\{\tau_{l}\right\}$ are the initial state probabilities

$$
\pi_{i}=P\left(X_{1}=s_{i}\right)
$$

- $A=\left\{\mathrm{a}_{i j}\right\}$ are the state transition probabilities

What is the probability of a sequence of states?

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{T}\right) \\
= & P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{T} \mid X_{1} \ldots, X_{T-1}\right) \\
= & P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
= & \pi_{X_{1}} \prod_{t=1}^{T-1} a_{X_{t} X_{t+1}}
\end{aligned}
$$

What is an HMM?

- Graphical Model
- Circles indicate states
- Arrows indicate probabilistic dependencies between states

HMM = Hidden Markov Model

What is an HMM?

- Green circles are hidden states
- Dependent only on the previous state

What is an HMM?

- Purple nodes are observed states
- Dependent only on their corresponding hidden state
- The past is independent of the future given the present

HMM Formalism

- $\{S, K, \Pi, A, B\}$
- $S:\left\{s_{1} \ldots s_{N}\right\}$ are the values for the hidden states
- $K:\left\{\mathrm{k}_{1} \ldots \mathrm{k}_{\mathrm{M}}\right\}$ are the values for the observations

HMM Formalism

- $\{S, K, \Pi, A, B\}$
- $\Pi=\left\{\pi_{t}\right\}$ are the initial state probabilities
- $A=\left\{a_{i j}\right\}$ are the state transition probabilities
- $B=\left\{b_{i k}\right\}$ are the observation state probabilities

Note : sometimes one uses $B=\left\{\mathrm{b}_{i j k}\right\}$
output then depends on previous state / transition as well

The crazy soft drink machine

Figure 9.2 The crazy soft drink machine, showing the states of the machine and the state transition probabilities.

$$
\begin{array}{cccc}
B & \text { cola } & \text { iced tea } & \text { lemonade } \\
C P & 0.6 & 0.1 & 0.3 \\
I P & 0.1 & 0.7 & 0.2
\end{array}
$$

Probability of \{lem,ice\} ?

- Sum over all paths taken through HMM
- Start in CP
- $1 \times 0.3 \times 0.7 \times 0.1+$
- $1 \times 0.3 \times 0.3 \times 0.7$

HMMs and Bayesian Nets (1)

$$
\begin{aligned}
& \begin{aligned}
\left.x_{1} \rightarrow x_{1} \ldots x_{T}, o_{1} \ldots o_{T}\right) & =P\left(x_{1}\right) P\left(o_{1} \mid x_{1}\right) \prod_{i=1}^{T-1} P\left(x_{i+1} \mid x_{i}\right) \cdot P\left(o_{i+1} \mid x_{i+1}\right) \\
& =\pi_{x_{1}} b_{x_{1} o_{1}}^{T} \prod_{t=1}^{T-1} a_{x_{i} x_{t+1}} b_{x_{t+1} o_{t+1}}
\end{aligned}
\end{aligned}
$$

HMM and Bayesian Nets (2)

"The past is independent of the future given the present."

Inference in an HMM

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Decoding

Given an observation sequence and a model, compute the probability of the observation sequence

$$
O=\left(o_{1} \ldots o_{T}\right), \mu=(A, B, \Pi)
$$

Compute $P(O \mid \mu)$

Decoding

Decoding

$P(O \mid X, \mu)=b_{x_{i_{0}}} b_{x_{2} o_{2}} \ldots b_{x_{x_{T}} o_{T}}$

$$
P(X \mid \mu)=\pi_{x_{1}} a_{x_{1} x_{2}} a_{x_{2} x_{3}} \ldots a_{x_{T-1}-x_{T}}
$$

Decoding

$$
\begin{aligned}
& P(O \mid X, \mu)=b_{x_{x_{1}}} b_{x_{2} o_{2}} \ldots b_{x_{x_{T}} o_{T}} \\
& P(X \mid \mu)=\pi_{x_{1}} a_{x_{1} x_{2}} a_{x_{2} r_{3}} . x_{x_{T-1}, x_{T}} \\
& P(O, X \mid \mu)=P P(O \mid X, \mu) P(X \mid \mu)
\end{aligned}
$$

Decoding

$$
P(O \mid X, \mu)=b_{x_{x_{1}},} b_{x_{2} o_{2}} \ldots b_{x_{x_{T}} o_{T}}
$$

$$
P(X \mid \mu)=\pi_{x_{1}} a_{x_{1} x_{2}} a_{x_{2} x_{3}} \ldots a_{x_{x_{-1}-x_{T}}}
$$

$$
P(O, X \mid \mu)=P(O \mid X, \mu) P(X \mid \mu)
$$

$$
P(O \mid \mu)=\sum_{X} P(O \mid X, \mu) P(X \mid \mu)
$$

Decoding

Complexity $O\left(N^{T} .2 T\right)$
E.g. $N=5, T=100$ gives $2 \cdot 100 \cdot 5^{100} \approx 10^{72}$

Dynamic Programming

Forward Procedure

- Special structure gives us an efficient solution using dynamic programming.
- Intuition: Probability of the $\mathrm{f} \mathfrak{\alpha} \alpha_{i}(1)=P\left(o_{1}, x_{1}=i \mid \mu\right)$ the same for all possible $t+1$ le

$$
=\pi_{i} \cdot b_{i o_{1}}
$$ sequences.

- Define:

$$
\alpha_{i}(t)=P\left(o_{1} \ldots o_{t}, x_{t}=i \mid \mu\right)
$$

Forward Procedure

$$
\alpha_{j}(t+1)
$$

$$
\begin{aligned}
& =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

Forward Procedure

$\alpha_{j}(t+1)$

$$
\begin{aligned}
& =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

Forward Procedure

$\alpha_{j}(t+1)$

$$
\begin{aligned}
& =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

Forward Procedure

$\alpha_{j}(t+1)$

$$
\begin{aligned}
& =P\left(o_{1} \ldots o_{t+1}, x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t} \mid x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) P\left(x_{t+1}=j\right) \\
& =P\left(o_{1} \ldots o_{t}, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

Forward Procedure

$$
\begin{aligned}
& =\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t+1}=j \mid x_{t}=i\right) P\left(x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 \ldots N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}
\end{aligned}
$$

Forward Procedure

$=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t+1}=j \mid x_{t}=i\right) P\left(x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 . . . N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}$

Forward Procedure

$$
\begin{aligned}
& =\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right) \\
& =\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t+1}=j \mid x_{t}=i\right) P\left(x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
\end{aligned}
$$

$$
=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)
$$

$$
=\sum_{i=1 . . . N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}}
$$

Forward Procedure

$=\sum_{i=1 . . . N} P\left(o_{1} \ldots o_{t}, x_{t}=i, x_{t+1}=j\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t+1}=j \mid x_{t}=i\right) P\left(x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 \ldots N} P\left(o_{1} \ldots o_{t}, x_{t}=i\right) P\left(x_{t+1}=j \mid x_{t}=i\right) P\left(o_{t+1} \mid x_{t+1}=j\right)$
$=\sum_{i=1 . . N} \alpha_{i}(t) a_{i j} b_{j_{t+1}}$
(a)

(b)

$$
\begin{aligned}
& \alpha_{j}(t+1)=\sum_{i=1 . . . N} \alpha_{i}(t) a_{i j} b_{j o_{t+1}} \\
& \text { Complexity } O\left(N^{2} \cdot T\right) \\
& \text { E.g. } N=5, T=100 \text { gives } \approx 3000
\end{aligned}
$$

Fig. 4. (a) Illustration of the sequence of operations required for the computation of the forward variable $\alpha_{t+1}(j)$. (b) Implementation of the computation of $\alpha_{t}(i)$ in terms of a lattice of observations t, and states i.

Backward Procedure

$$
\begin{aligned}
& \beta_{i}(T)=1 \\
& \beta_{i}(t)=P\left(o_{t+1} \ldots o_{T} \mid x_{t}=i\right) \\
& \beta_{i}(t)=\sum_{j=1 \ldots N} a_{i j} b_{i_{t+1}} \beta_{j}(t+1)
\end{aligned}
$$

Probability of the rest of the states given the first state

Fig. 5. Illustration of the sequence of operations required for the computation of the backward variable $\beta_{t}(i)$.

Decoding Solution

$$
\begin{array}{ll}
\hline P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T) & \text { Forward Procedure } \\
\hline P(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} \beta_{i}(1) & \text { Backward Procedure } \\
\hline
\end{array}
$$

$$
P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t) \quad \text { Combination }
$$

$$
\begin{aligned}
P\left(O, X_{t}\right. & =i \mid \mu)=P\left(o_{1} \ldots o_{t}, X_{t}=i, o_{t+1} \ldots o_{T} \mid \mu\right) \\
& =P\left(o_{1} \ldots o_{t}, X_{t}=i \mid \mu\right) . P\left(o_{t+1} \ldots o_{T} \mid o_{1} \ldots o_{t}, X_{t}=i, \mu\right) \\
& =P\left(o_{1} \ldots o_{t}, X_{t}=i \mid \mu\right) . P\left(o_{t+1} \ldots o_{T} \mid X_{t}=i, \mu\right) \\
& =\alpha_{i}(t) . \beta_{i}(t)
\end{aligned}
$$

$$
P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)
$$

Best State Sequence

- Find the state sequence that best explains the observations
- Two approaches
- Individually most likely states
- Most likely sequence (Viterbi)

$$
\arg \max _{X} P(X \mid O)
$$

Best State Sequence (1)

$$
\begin{aligned}
\gamma_{i}(t) & =P\left(X_{t}=i \mid O, \mu\right) \\
& =\frac{P\left(X_{t}=i, O \mid \mu\right)}{P(O \mid \mu)} \\
& =\frac{\alpha_{i}(t) \cdot \beta_{i}(t)}{\sum_{j=1}^{n} \alpha_{j}(t) \cdot \beta_{j}(t)}
\end{aligned}
$$

Most likely state at each point in time

$$
\hat{X}_{t}=\arg \max \gamma_{i}(t)
$$

Best State Sequence (2)

- Find the state sequence that best explains the observations
- Viterbi algorithm

$$
\arg \max _{X} P(X \mid O)
$$

Viterbi Algorithm

The state sequence which maximizes the probability of seeing the observations to time $t-1$, landing in state j, and seeing the observation at time t

Viterbi Algorithm

Viterbi Algorithm

HMMs and Bayesian Nets (1)

$$
\begin{aligned}
& \begin{aligned}
\left.x_{1} \rightarrow x_{1} \ldots x_{T}, o_{1} \ldots o_{T}\right) & =P\left(x_{1}\right) P\left(o_{1} \mid x_{1}\right) \prod_{i=1}^{T-1} P\left(x_{i+1} \mid x_{i}\right) \cdot P\left(o_{i+1} \mid x_{i+1}\right) \\
& =\pi_{x_{1}} b_{x_{1} o_{1}}^{T} \prod_{t=1}^{T-1} a_{x_{i} x_{t+1}} b_{x_{t+1} o_{t+1}}
\end{aligned}
\end{aligned}
$$

HMM and Bayesian Nets (2)

"The past is independent of the future given the present."

Inference in an HMM

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Dynamic Programming

Parameter Estimation

- Given an observation sequence, find the model that is most likely to produce that sequence.
- No analytic method $\underset{\mu}{\arg \max } P\left(O_{\text {training }} \mid \mu\right)$
- Given a model and observation sequence, update the model parameters to better fit the observations.

$$
\begin{gathered}
\alpha_{i}(t)=P\left(o_{1} \ldots o_{t}, x_{t}=i \mid \mu\right) \\
\beta_{i}(t)=P\left(o_{t+1} \ldots o_{T} \mid x_{t}=i\right) \\
P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)
\end{gathered}
$$

Figure 9.7 The probability of traversing an arc. Given an observation sequence and a model, we can work out the probability that the Markov process went from state s_{i} to s_{j} at time t.

$$
\begin{aligned}
p_{t}(i, j) & =P\left(X_{t}=i, X_{t+1}=j \mid O, \mu\right) \\
& =\frac{P\left(X_{t}=i, X_{t+1}=j, O \mid \mu\right)}{P(O \mid \mu)}
\end{aligned}
$$

Parameter Estimation

Parameter Estimation

Instance of Expectation Maximization

- We have that

$$
P(O \mid \hat{\mu}) \geq P(O \mid \mu)
$$

- We may get stuck in local maximum (or even saddle point)
- Nevertheless, Baum-Welch usually effective

Some Variants

- So far, ergodic models
- All states are connected
- Not always wanted
- Epsilon or null-transitions
- Not all states/transitions emit output symbols
- Parameter tying
- Assuming that certain parameters are shared
- Reduces the number of parameters that have to be estimated
- Logical HMMs (Kersting, De Raedt, Raiko)
- Working with structured states and observation symbols
- Working with log probabilities and addition instead of multiplication of probabilities (typically done)

The Most Important Thing

We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable.

HMM's from an Agent Perspective

- AI: a modern approach
- Al is the study of rational agents
- Third part by Wolfram Burgard on Reinforcement learning
- HMMs can also be used here
- Typically one is interested in P(state)

$$
P\left(X_{t}=i \mid o_{1}, \ldots, o_{T}\right)
$$

Example

- Possible states
- \{snow, no snow\}
- Observations
- \{skis, no skis \}
- Questions
- Was there snow the day before yesterday (given a sequence of observations)?
- Is there now snow (given a sequence of observations)?
- Will there be snow tomorrow, given a sequence of observations? Next week?

HMM and Agents

- Question

$$
P\left(X_{t}=i \mid o_{1}, \ldots, o_{T}\right)
$$

- Case 1 : often called smoothing
- t < T : see last time

$$
\begin{aligned}
\gamma_{i}(t) & =P\left(X_{t}=i \mid O, \mu\right) \\
& =\frac{\alpha_{i}(t) \cdot \beta_{i}(t)}{\sum_{j=1}^{n} \alpha_{j}(t) \cdot \beta_{j}(t)} \\
& \text { Most likely state at each point in time }
\end{aligned}
$$

\& Only part of trellis between t and T needed

$$
P\left(X_{t}=i \mid o_{1}, \ldots, o_{T}\right)
$$

- Case 2 : often called filtering
- $\mathrm{t}=\mathrm{T}$: last time

$$
\begin{aligned}
\gamma_{i}(t) & =P\left(X_{t}=i \mid O, \mu\right) \\
& =\frac{\alpha_{i}(t) \cdot \beta_{i}(t)}{\sum_{j=1}^{n} \alpha_{j}(t) \cdot \beta_{j}(t)} \\
& \text { Most likely state at each point in time }
\end{aligned}
$$

\therefore Can we make it recursive ? I.e go from T-1 to T?

$$
P\left(X_{t}=i \mid o_{1}, \ldots, o_{T}\right)
$$

- Case 2 : often called filtering
- t= T : last time

$$
\begin{aligned}
\lambda_{i}(T) & =P\left(X_{T}=i \mid o_{1} \ldots o_{T}, \mu\right) \\
& =\gamma_{i}(T) \\
& =\frac{\alpha_{i}(T) \cdot \beta_{i}(T)}{\sum_{j=1}^{n} \alpha_{j}(T) \cdot \beta_{j}(T)} \\
& =\frac{\alpha_{i}(T)}{\sum_{j=1}^{n} \alpha_{j}(T)}
\end{aligned}
$$

HMM and Agents
 $$
P\left(X_{t}=i \mid o_{1}, \ldots, o_{T}\right)
$$

- Case 3 : often called prediction
- t= T+1 (or T+K) not yet seen

$$
\begin{aligned}
& P\left(X_{T+1}=i \mid o_{1}, \ldots, o_{T}\right) \\
= & \sum_{j} P\left(X_{T+1}=i \mid X_{T}=j, o_{1}, \ldots, o_{T}\right) \cdot P\left(X_{T}=j \mid o_{1}, \ldots, o_{T}\right) \\
= & \sum_{j} P\left(X_{T+1}=i \mid X_{T}=j\right) \cdot P\left(X_{T}=j \mid o_{1}, \ldots, o_{T}\right)
\end{aligned}
$$

- Interesting : recursive
- Easily extended towards k>1

Extensions

- Use Dynamic Bayesian networks instead of HMMs
- One state corresponds to a Bayesian Net
- Observations can become more complex
- Involve actions of the agent as well
- Cf. Wolfram Burgard's Part

