Advanced Artificial Intelligence

Part ll. Statistical NLP

Markov Models and N-gramms

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Some slides taken from Helmut Schmid, Rada Mihalcea, Bonnie Dorr,
Leila Kosseim, Peter Flach and others

Contents

= Probabilistic Finite State Automata
Markov Models and N-gramms

Based on

= Jurafsky and Martin, Speech and Language Processing,
Ch. 6.

= Variants with Hidden States
Hidden Markov Models

Based on
= Manning & Schuetze, Statistical NLP, Ch.9
= Rabiner, A tutorial on HMMs.

Shannon game
Word Prediction

= Predicting the next word in the
sequence
« Statistical natural language
» The cat is thrown out of the ...
* The large green ...
» Sue swallowed the large green ...

Claim

= A useful part of the knowledge needed to allow Word
Prediction can be captured using simple statistical
techniques.

= Compute:
- probability of a sequence
- likelihood of words co-occurring

= Why would we want to do this?

* Rank the likelihood of sequences containing various
alternative alternative hypotheses

» Assess the likelihood of a hypothesis

Probabillistic Language Model

= Definition:
» Language model is a model that enables

one to compute the probability, or
likelihood, of a sentence s, P(s).

= Let’s look at different ways of computing
P(s) in the context of Word Prediction

Language Models

How to assign probabilities to word sequences?

The probability of a word sequence w, , is decomposed
into a product of conditional probabilities.

P(wy) = P(wy) P(ws I wy) P(wg I wywy) ... P(w,, Twy)
= [licy o P(w; 1wy i)

Problems ?

What is a (Visible) Markov Model ?

o 0000

Graphical Model (Can be interpreted as Bayesian Net)
Circles indicate states

Arrows indicate probabilistic dependencies between states
State depends only on the previous state

“The past is independent of the future given the present.”
(d-separation)

Markov Model Formalization

= {§, 11, A}

= S:{w,...wy} are the values for the states
= Here : the words

Limited Horizon (Markov Assumption)

PX. =w 1X,...X)=P(X,,, =w,1X)

+1 +1

Time Invariant (Stationary) = P(X, =w, | X,)

Transition Matrix A~ a, = P(X,,, =w, | X, =w,)

+1

Markov Model Formalization
ST e e

«{S, I1, A}
=S : {s,...Sy} are the values for the states

*[1={rn } are the initial state probabilities
T.=P(X, =w)

"A = {a;} are the state transition probabilities

Language Model

Each word only depends on the preceeding word
P(w; Twy4)=P(w; lw,)

» 1st order Markov model, bigram

Final formula: P(w,) =TT_, , P(w; lw;,)

Markov Models

= Probabilistic Finite State Automaton

Figure 9.1 A Markov model.

What is the probability of a sequence
of states ?

P(X,,....X,)
= P(X)P(X, | X)P(X,1X,,X,)..P(X, | X, ..., X, ,)
= P(X,)P(X, | X)P(X,1X,)..P(X, | X,)

T-1
=TT | I a
Xl Xl‘Xt-i-l
=1

Figure 9.1 A Markov model.

P(t,1,p)

=P(X,=)P(X, =il X, =t)P(X;=pl X, =i)
=1.0x0.3x0.6

=0.18

Trigrams

Now assume that

 each word only depends on the 2 preceeding words
P(w; Twyiq)=P(w; [wip, wiy)

- 2nd order Markov model, trigram
Final formula: P(w,) =1l_ , P(w; | w5, w,)

o © ® © ®

Simple N-Grams

= An N-gram model uses the previous N-1
words to predict the next one:

© P(Wq | Wynet Whneo, Wit)
= unigrams: P(dog)
= bigrams: P(dog | big)
= trigrams: P(dog | the big)
= quadrigrams: P(dog | chasing the big)

A Bigram Grammar Fragment

Eat on 16 Eat Thai .03
Eat some .06 Eat breakfast |.03
Eat lunch .06 Eatin .02
Eat dinner .05 Eat Chinese .02
Eat at .04 Eat Mexican .02
Eat a .04 Eat tomorrow | .01
Eat Indian .04 Eat dessert .007
Eat today .03 Eat British .001

Additional Grammar

<start> | 25 Want some .04
<start>I'd |.06 Want Thai .01
<start> Tell |.04 To eat 20
<start>I'm |.02 To have 14
| want 32 To spend .09
| would 29 To be .02
| don’t .08 British food .60
| have .04 British restaurant | .15
Want to .65 British cuisine .01
Want a .05 British lunch .01

Computing Sentence Probability

P(l want to eat British food) = P(l|<start>) P(want|l)
P(to|want) P(eat|to) P(British|eat) P(food|British) =
.25X.32x.65%.26x.001x.60 = .000080

VS.

P(l want to eat Chinese food) = .00015

Probabilities seem to capture “syntactic" facts, “world
knowledge"

- eat is often followed by a NP
- British food is not too popular

N-gram models can be trained by counting and
normalization

Some adjustments

= product of probabilities... numerical underflow
for long sentences

= so instead of multiplying the probs, we add
the log of the probs

P(/ want to eat British food)

Computed using

log(P(l|<s>)) + log(P(want|l)) + log(P(to|want)) + log(P(eat|to)) +
log(P(British|eat)) + log(P(food|British))

= log(.25) + log(.32) + log(.65) + log (.26) + log(.001) + log(.6)

=-11.722

Why use only bi- or tri-grams?

= Markov approximation is still costly
with a 20 000 word vocabulary:
bigram needs to store 400 million parameters
trigram needs to store 8 trillion parameters
using a language model > trigram is impractical

= to reduce the number of parameters, we can:
do stemming (use stems instead of word types)
group words into semantic classes
seen once --> same as unseen

= Shakespeare

884647 tokens (words)
29066 types (wordforms)

unigram

(a) To him swallowed confess hear both. Which. Of save on trail for are ay
device and rote life have

(b) Every enter now severally so, let

(c) Hill he late speaks; or! a more to leg less first you enter

(d) Will rash been and by I the me loves gentle me not slavish page, the and
hour; 11l let

(e) Are where exeunt and sighs have rise excellency took of.. Sleep knave
we. near; vile like

2. Bigram approximation to Shakespeare

(a) What means, sir. I confess she? then all sorts, he is trim, captain.

(b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the
King Henry. Live king. Follow.

(¢) What we, hath got so she that [rest and sent to scold and nature bankrupt,
nor the first gentleman?

(d) Enter Menenius, if it so many good direction found’st thou art a strong
upon command of fear not a liberal largess given away, Falstaff! Exeunt

(¢) Thou whoreson chops. Consumption catch your dearest friend, well,
and I know where many mouths upon my undoing all but be, how soon,
then; we’ll execute upon my love’s bonds and we do you will?

(f) The world shall- my lord!

3. Trigram approximation to Shakespeare

(a) Sweet prince, Falstalf shall die. Harry of Monmouth’s grave.

(b) This shall forbid it should be branded, if renown made it empty.

(c) What 1s’t that cried?

(d) Indeed the duke; and had a very good friend.

(e) Fly, and will rid me these news of price. Therefore the sadness of part-
ing, as they say, 'tis done.

(f) The sweet! How many then shall posthumus end his miseries.

4. Quadrigram approximation to Shakespeare

(a) King Henry. What! 1 will go seek the traitor Gloucester. Exeunt some
of the watch. A great banquet serv’d in;

(b) Will you not tell me who I am?

(c) It cannot be but so.

(d) Indeed the short and the long. Marry, "tis a noble Lepidus.

(e) They say all lovers swear more performance than they are wont to keep
obliged faith unforfeited!

(f) Enter Leonato’s brother Antonio, and the rest, but seek the weary beds
of people sick.

Building n-gram Models

= Data preparation:
Decide training corpus
Clean and tokenize

How do we deal with sentence boundaries?
= | eat. |sleep.
(I eat) (eat]) (I sleep)
" <s>| eat <s> | sleep <s>
(<s> 1) (I eat) (eat <s>) (<s> |) (I sleep) (sleep <s>)

= Use statistical estimators:

to derive a good probability estimates based on training
data.

Maximum Likelihood Estimation

= Choose the parameter values which gives the
highest probability on the training corpus

= Let C(wy,..,w,) be the frequency of n-gram
Wo,..,W,

Cw,,...,w_)

PueW Iw, ,.ow) =
’ ' C(w,,...w_,)

Example 1: P(event)

in a training corpus, we have 10 instances of “come across”
« 8 times, followed by “as”

« 1 time, followed by “more”

« 1 time, followed by “a”

with MLE, we have:
* P(as | come across) =0.8
* P(more | come across) = 0.1
* P(a| come across) = 0.1
* P(X| come across) =0 where X # “as”, “more”, “a”

if a sequence never appears in training corpus? P(X)=0
MLE assigns a probability of zero to unseen events ...
probability of an n-gram involving unseen words will be zero!

Maybe with a larger corpus?

= Some words or word combinations are
unlikely to appear !!!

= Recall:
n T \\‘
le+B6 £ .
.) I : Zeit o
o Zipf's | |
IDT S 1AW N
~ i
® f 1/[' o, 1oees |
o L
[
ull L
3 1000 F
4]
G L
100 F
10 F
o -
l | | | L | L | L | L L
1 10 100 1000 10000 100000 1e+06

rank

Problem with MLE: data sparseness (con't)

= in (Balh et al 83)
¢ training with 1.5 million words

» 23% of the trigrams from another part of the
same corpus were previously unseen.

= So MLE alone is not good enough estimator

Discounting or Smoothing

MLE is usually unsuitable for NLP because of the
sparseness of the data

We need to allow for possibility of seeing events not
seen in training

Must use a Discounting or Smoothing technique

Decrease the probability of previously seen events to
leave a little bit of probability for previously unseen
events

Statistical Estimators

= Maximum Likelihood Estimation (MLE)

= Smoothing
* Add one
» Add delta
* Witten-Bell smoothing

= Combining Estimators
« Katz's Backoff

Add-one Smoothing (Laplace’s law)

= Pretend we have seen every n-gram at
least once

= [ntuitively:
* new_count(n-gram) = old_count(n-gram) + 1

= The idea is to give a little bit of the
probability space to unseen events

Add-one: Example

unsmoothed bigram counts: 2" word
I want to eat Chinese | food lunch Total (N)
(1 8 1087 0 13 0 0 0 3437
want 3 0 786 0 8 1215
S to 3 0 10 860 3 0 12 3256
§ < eat 0 0 0 19 2 52 938
S Chinese 2 0 0 0 120 213
= food 19 0 17 0 0 1506
lunch 4 0 0 0 1 459
\

unsmoothed normalized bigram probabilities:
I want to eat Chinese food lunch Total
I 0023 32 0 0038 0 0 0 1

(8/3437) (13/3437)

want 0025 0 65 0 0049 0066 0049 1
to 00092 0 .0031 .26 00092 0 0037 1
eat 0 0 .0021 0 .020 .0021 055 1
Chinese 0094 0 0 0 0 56 .0047 1
food 013 0 o1 0 0 0 0 1
lunch 0087 0 0 0 0 .0022 0 1

Add-one: Example (con't)

add-one smoothed bigram counts:

I want fo eat Chinese | food lunch Total (N+V)
I 8 9 1687 1 14 1 1 1 3437
1088 5053
want 34 1 787 1 9 7 2831
fo 1 11 861 13 4872
eat 1 1 23 1 20 3 53 2554
Chinese 3 1 1 1 1 121 2 1829
food 20 1 18 1 1 1 1 3122
lunch 5 1 1 1 1 2 1 2075
add-one normalized bigram probabilities:
I want to eat Chinese | food lunch Total
I .0018 .22 .0002 .0028 .0002 .0002 .0002 1
(9/5053) (14/5053)
want .0014 .00035 | .28 .00035 0025 .0032 .0025 1
to .00082 .00021 .0023 .18 .00082 | .00021 .0027 1
eat .00039 .00039 |.0012 .00039 .0078 .0012 021 1
Chinese | .0016 .00055 | .00055 |.00055 00055 | .066 .0011 1
food .0064 .00032 | .0058 .00032 00032 |.00032 |.00032 1
lunch .0024 .00048 |.00048 |.00048 00048 |.0022 .00048 1

W Z

Add-one, more formally

C(wiwz...wi)+1
Padai(W1 w2 ... Wn) =
N + B

. nb of n-grams in training corpus _
. nb of bins (of possible n-grams)

B = VA2 for bigrams
B = VA3 for trigrams etc.
where V is size of vocabulary

Problem with add-one smoothing

bigrams starting with Chinese are boosted by a factor of
8!1(1829/213)

unsmoothed bigram counts:
- I nt to eat Chinese | food | lunch .. | Total (N)
T 8| 1087 0 13 0 0 0 3437
- want 3 0 786 0 6 8 6 1215
S| |t 3 0 10| 860 3 0 12 3256
=< [eat 0 0 2 0 19 2 52 938
< Chinese 2 0 0 0 0 120 1 213
food 19 0 17 0 0 0 0 1506
| [tunch 4 0 0 0 0 1 0 459
add-one smoo‘rhed bigram counts:
want to |eat | Chinese food | lunch .. | Total (N+V)
(I 9| 1088 1 14 1 5053
want 4 1| 787 1 7 9 7 2831
. to 4 1| 11| 8e1 4 1 13 4872
o
S < eat 1| 23 1 20 3 53 2554
&, Chinese 3 1 1 1 1 121 2 1829
food 20 1| 18 1 1 1 1 3122
§ lunch 5 1 1 1 1 2 1 2075

Problem with add-one smoothing (con't)

= Data from the AP from (Church and Gale, 1991)
Corpus of 22,000,000 word tokens

Vocabulary of 273,266 words (i.e. 74,674,306,760 possible bigrams - or
bins)
74,671,100,000 bigrams were unseen

And each unseen bigram was given a frequency of 0.000Zﬁé
s Add"
Freq. from 17]: - : one
! .. 5 ! A "MLE // empirical add-one

- o= |0.000027 |0.000295 }
Freq. from - 0.448 0.000589 | Y t0o high

1
2 1.25 0.008884

3 2.24 0.00118 \

4 3.23 0.00147 X +00 low J
5 4.21 0.00177

J
= Total probability mass given to unseen bigrams =

(74,671,100,000 x 0.000295) / 22,000,000 ~0.9996 !!!!

Problem with add-one smoothing

= every previously unseen n-gram is given a low
probability, but there are so many of them that too much
probability mass is given to unseen events

= adding 1 to frequent bigram, does not change much, but
adding 1 to low bigrams (including unseen ones) boosts
them too much !

= In NLP applications that are very sparse, Laplace’s Law
actually gives far too much of the probability space to
unseen events.

Add-delta smoothing (Lidstone’s law)

instead of adding 1, add some other (smaller) positive value A

Cwiw2...wx) + A
N+ AB

Padap(W1 W2 ...Wn) =

Expected Likelihood Estimation (ELE) A = 0.5
Maximum Likelihood Estimation A = 0
Add one (Laplace) A =1

better than add-one, but still...

Witten-Bell smoothing

= |ntuition:
An unseen n-gram is one that just did not occur yet
When it does happen, it will be its first occurrence

So give to unseen n-grams the probability of seeing a
new n-gram

= Two cases discussed
Unigram
Bigram (more interesting)

Witten-Bell: unigram case

= N: number of tokens (word = Z: number of unseen N-gramms

occurrences in this case) 7 — E : 1
= T: number of types (diff.

observed words) - can be i:¢; =0
different than V (number of = Prob. unseen
words in dictionary
N . T
= Total probability mass assigned p=f= —
to zero-frequency N-grams: ’ Z(T + N)
= Prob. seen
2. ;
p; Ci
‘T N4T pf =

N+T

Witten-Bell: bigram case
condition type counts on word

= N(w): # of bigrams tokens starting with w
= T(w): # of different observed bigrams starting with w

= Total probability mass assigned to zero-frequency N-grams:

t:c(w;,wg)=0

= Z: number of unseen N-gramms

Z(wg) = Z 1

ire(w; wg)=0

Witten-Bell: bigram case
condition type counts on word

= Prob. unseen

T'(wg)

p” (wilwg) =

Z(wz)(N(we) +T(ws))

= Prob. seen

c(Wqe, w;)
wy) + T (wy)

P (wihr) = 3

The restaurant example

The original counts were:

I want | to eat Chine | food | lunch | ..| N(w) T(w) Z(w)
se seen bigram | seen bigram | unseen

tokens types bigram types
I 8| 1087 0 13 0 0 0 3437 95 1521
want 3 0| 786 0 6 8 6 1215 76 1540
to 3 0 10| 860 3 0 12 3256 130 1486
eat 0 0 2 0 19 2 52 938 124 1492
Chinese 2 0 0 0 0| 120 1 213 20 1592
food 19 0 17 0 0 0 0 1506 82 534
lunch 4 0 0 0 0 1 0 459 45 1571

T(w)= number of different seen bigrams types starting with w

we have a vocabulary of 1616 words, so we can compute

Z(w)= number of unseen bigrams types starting with w
Z(w)=1616 - T(w)

N(w) = number of bigrams tokens starting with w

Witten-Bell smoothed probabilities

Witten-Bell normalized bigram probabilities:

I want to eat Chinese | food lunch Total
I .0022 .3078 |.000002 |.0037 .000002 |.000002 |.000002 1

(7.78/3437)
want .00230 .00004 | .6088 .00004 |.0047 .0062 .0047 1
to .00009 .00003 |.0030 .2540 .00009 |.00003 |.0038 1
eat .00008 .00008 | .0021 .00008 |.0179 .0019 .0490 1
Chinese |.00812 .00005 [.00005 .00005 |.00005 | .5150 .0042 1
food .0120 .00004 | .0107 .00004 |.00004 |.00004 |.00004 1
lunch .0079 .00006 |.00006 .00006 |.00006 |.0020 .00006 1

Witten-Bell smoothed count

- the count of the unseen bigram “/ lunch”

* the count of the seen bigram “want to”

M

N@)

95

3437

Z0) N+ TA) 1521 3437+ 95

= 0.06

count(want to)x Nwant) = xﬁ = 739.73
N(want) + T(want) 1215+ 76
Witten-Bell smoothed bigram counts:
I want to eat Chinese | food lunch Total
I 7.78 | 1057.76 061 12.65 .06 .06 .06 3437
want 2.82 05| 739.73 .05 5.65 7.53 5.65 1215
fo 2.88 .08 9.62| 826.98 2.88 .08 12.50 3256
eat .07 .07 19.43 07 16.78 1.77 45.93 938
Chinese 1.74 .01 .01 .01 01| 109.70 91 213
food 18.02 .05 16.12 .05 .05 .05 .05 1506
lunch 3.64 .03 .03 .03 .03 0.91 .03 459

Combining Estimators
* so far, we gave the same probability to all unseen n-
grams

we have never seen the bigrams
= journal of P ,nsmootheq(Of iournal) = 0
= journal from P, .. .meq(from |journal) = 0
= journal never P,meqs(N€VEr ljournal) =0

all models so far will give the same probability to all 3
bigrams

= but intuitively, “journal of” is more probable because...
“of” is more frequent than “from” & “never”
unigram probability P(of) > P(from) > P(never)

Combining Estimators (con't)

= observation:

* unigram model suffers less from data sparseness than
bigram model

* bigram model suffers less from data sparseness than
trigram model

= 50 use a lower model estimate, to estimate
probability of unseen n-grams

= if we have several models of how the history
predicts what comes next, we can combine them in
the hope of producing an even better model

Simple Linear Interpolation

= Solve the sparseness in a trigram model by mixing with
bigram and unigram models

= Also called:
 linear interpolation,
¢ finite mixture models
* deleted interpolation
= Combine linearly
Pi(Wq|Wio,W 1) = AP (W) + AP(wi|wp) + AP (W, Wi 5,W)

* where 0< A, <1 and X, A, =1

Backoff Smoothing

Smoothing of Conditional Probabilities
p(Angeles | to, Los)

If ,to Los Angeles”is not in the training corpus,
the smoothed probability p(Angeles | to, Los) is
identical to p(York | to, Los).

However, the actual probability is probably close to
the bigram probability p(Angeles | Los).

Backoff Smoothing

(Wrong) Back-off Smoothing of trigram probabilities
if C(w', w*, w)>0
P*(w | w', w") = P(w | w', w*)
else if C(w*, w)>0
P*(w | w', w*) = P(w | w")
else if C(w)>0
P*(w | w', w*) = P(w)

else
P*(w | w', w*) =1/ #words

Backoff Smoothing

Problem: not a probability distribution

Solution:
Combination of Back-off and frequency discounting

Pwlw,,..w,)=C*w,,..,w.,w)/N if C(wy,...,w,w)>0
else

Pwlw,,..,w,) = a(wy,....w,) P(W | w,,...,w,)

Backoff Smoothing

The backoff factor is defined s.th. the probability
mass assigned to unobserved trigrams

A(Wy,...,W,) P(W | w,,...,w,))

w: C(w ..., Wk,W)=O

1
IS identical to the probability mass discounted from
the observed trigrams.

Spelling Correction

They are leaving in about fifteen minuets to go to her house.
The study was conducted mainly be John Black.

Hopefully, all with continue smoothly in my absence.

Can they lave him my messages?

| need to notified the bank of....

He is trying to fine out.

Spelling Correction

= One possible method using N-gramms
= Sentence w,, ..., W,

= Alternatives {v,,...v} may exist for w,
» Words sounding similar
» Words close (edit-distance)

= For all such alternatives compute

" P(wy, ..., W4, Vi;Wy 41 ,..., W) and
choose best one

Other applications of LM

Author / Language identification

hypothesis: texts that resemble each other (same author,
same language) share similar characteristics

* In English character sequence “ing” is more probable than in
French

Training phase:

» construction of the language model

« with pre-classified documents (known language/author)
Testing phase:

» evaluation of unknown text (comparison with language model)

Example: Language identification

= bigram of characters
characters = 26 letters (case insensitive)

possible variations: case sensitivity, punctuation,
beginning/end of sentence marker, ...

A B c D Y Y4

A 0.0014 |0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014
B 0.0014 |0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014
c 0.0014 | 0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014
D 0.0042 | 0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014
E 0.0097 |0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014

0.0014
Y 0.0014 | 0.0014 |0.0014 |0.0014 | .. 0.0014 | 0.0014
Y4 0.0014 | 0.0014 | 0.0014 | 0.0014 | 0.0014 0.0014 | 0.0014

1. Train a language model for English:

2. Train a language model for French
3. Evaluate probability of a sentence with LM-English & LM-French

4. Highest probability -->language of sentence

Claim

= A useful part of the knowledge needed to allow Word

Prediction can be captured using simple statistical
techniques.

= Compute:

- probability of a sequence
- likelihood of words co-occurring

= |t can be useful to do this.

