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Shannon game
Word Prediction

 Predicting the next word in the
sequence
• Statistical natural language ….
• The cat is thrown out of the …
• The large green …
• Sue swallowed the large green …
• …



Claim

 A useful part of the knowledge needed to allow Word
Prediction can be captured using simple statistical
techniques.

 Compute:
- probability of a sequence
- likelihood of words co-occurring

 Why would we want to do this?
• Rank the likelihood of sequences containing various

alternative alternative hypotheses
• Assess the likelihood of a hypothesis



Probabilistic Language Model

 Definition:
• Language model is a model that enables

one to compute the probability, or
likelihood, of a sentence s, P(s).

 Let’s look at different ways of computing
P(s) in the context of Word Prediction



How to assign probabilities to word sequences?

The probability of a word sequence w1,n is decomposed
into a product of conditional probabilities.
    P(w1,n) = P(w1) P(w2 | w1) P(w3 | w1,w2) ... P(wn  | w1,n-1)

    = i=1..n P(wi  | w1,i-1)

Problems ?

Language Models



What is a (Visible) Markov Model ?

 Graphical Model (Can be interpreted as Bayesian Net)
 Circles indicate states
 Arrows indicate probabilistic dependencies between states
 State depends only on the previous state
 “The past is independent of the future given the present.”

(d-separation)



Markov Model Formalization
SSS SS

 {S, , } 
 S : {w1…wN } are the values for the states

 Here : the words

Limited Horizon (Markov Assumption)

Time Invariant (Stationary)

Transition Matrix A

 
P(Xt+1 = wk | X1,…,Xt ) = P(Xt+1 = wk | Xt )

= P(X2 = wk | X1)

aij = P(Xt+1 = wj | Xt = wi )



Markov Model Formalization
SSS SS

{S, , } 
S : {s1…sN } are the values for the states

 = {} are the initial state probabilities

A = {aij} are the state transition probabilities

AAAA

i = P(X1 = wi )



Each word only depends on the preceeding word
 P(wi  | w1,i-1) = P(wi  | wi-1)
• 1st order Markov model, bigram

Final formula:   P(w1,n) = i=1..n P(wi  | wi-1)

Language Model



Markov Models

 Probabilistic Finite State Automaton
 Figure 9.1



What is the probability of a sequence
of states ?

 

P(X1,…,XT )
= P(X1)P(X2 | X1)P(X3 | X1,X2 )...P(XT | X1…,XT 1)
= P(X1)P(X2 | X1)P(X3 | X2 )...P(XT | XT 1)

=  X1
aXt Xt+1

t=1

T 1





Example

 Fig 9.1

P(t, i, p)
= P(X1 = t)P(X2 = i | X1 = t)P(X3 = p | X2 = i)
= 1.0  0.3 0.6
= 0.18



Now assume that
• each word only depends on the 2 preceeding words

 P(wi  | w1,i-1) = P(wi  | wi-2, wi-1)
• 2nd order Markov model, trigram

Final formula:   P(w1,n) = i=1..n P(wi  | wi-2, wi-1)

Trigrams

SSS SS



Simple N-Grams

 An N-gram model uses the previous N-1
words to predict the next one:
• P(wn | wn-N+1 wn-N+2… wn-1 )

 unigrams: P(dog)
 bigrams:  P(dog | big)
 trigrams: P(dog | the big)
 quadrigrams: P(dog | chasing the big)



A Bigram Grammar Fragment

.001Eat British.03Eat today

.007Eat dessert.04Eat Indian

.01Eat tomorrow.04Eat a

.02Eat Mexican.04Eat at

.02Eat Chinese.05Eat dinner

.02Eat in.06Eat lunch

.03Eat breakfast.06Eat some

.03Eat Thai.16Eat on



Additional Grammar

.01British lunch.05Want a

.01British cuisine.65Want to

.15British restaurant.04I have

.60British food.08I don’t

.02To be.29I would

.09To spend.32I want

.14To have.02<start> I’m

.26To eat.04<start> Tell

.01Want Thai.06<start> I’d

.04Want some.25<start> I



Computing Sentence Probability

 P(I want to eat British food) = P(I|<start>) P(want|I)
P(to|want) P(eat|to) P(British|eat) P(food|British) =
.25x.32x.65x.26x.001x.60 = .000080

 vs.
 P(I want to eat Chinese food) = .00015

 Probabilities seem to capture “syntactic'' facts, “world
knowledge''
- eat is often followed by a NP
- British food is not too popular

 N-gram models can be trained by counting and
normalization



Some adjustments

 product of probabilities… numerical underflow
for long sentences

 so instead of multiplying the probs, we add
the log of the probs

P(I want to eat British food)
Computed using
log(P(I|<s>)) + log(P(want|I)) + log(P(to|want)) + log(P(eat|to)) +

log(P(British|eat)) + log(P(food|British))
= log(.25) + log(.32) + log(.65) + log (.26) + log(.001) + log(.6)
= -11.722



Why use only bi- or tri-grams?

 Markov approximation is still costly
with a 20 000 word vocabulary:
• bigram needs to store 400 million parameters
• trigram needs to store 8 trillion parameters
• using a language model > trigram is impractical

 to reduce the number of parameters, we can:
• do stemming (use stems instead of word types)
• group words into semantic classes
• seen once --> same as unseen
• ...

 Shakespeare
• 884647 tokens (words)

29066 types (wordforms)



unigram





Building n-gram Models

 Data preparation:
• Decide training corpus
• Clean and tokenize
• How do we deal with sentence boundaries?

 I eat.  I sleep.
• (I eat) (eat I) (I sleep)

 <s>I eat <s> I sleep <s>
• (<s> I) (I eat) (eat <s>) (<s> I) (I sleep) (sleep <s>)

 Use statistical estimators:
•  to derive a good probability estimates based on training

data.



Maximum Likelihood Estimation
 Choose the parameter values which gives the

highest probability on the training corpus

 Let C(w1,..,wn) be the frequency of n-gram
w1,..,wn

PMLE (wn|w1,..,wn-1) =  C(w1,..,wn )
C(w1,..,wn-1)



Example 1: P(event)
 in a training corpus, we have 10 instances of “come across”

• 8 times, followed by “as”
• 1 time, followed by “more”
• 1 time, followed by “a”

 with MLE, we have:
• P(as | come across)  = 0.8
• P(more | come across) = 0.1
• P(a | come across) = 0.1
• P(X | come across) = 0  where X  “as”, “more”, “a”

 if a sequence never appears in training corpus? P(X)=0
 MLE assigns a probability of zero to unseen events …
 probability of an n-gram involving unseen words will be zero!



Maybe with a larger corpus?

 Some words or word combinations are
unlikely to appear !!!

 Recall:
• Zipf’s law
• f ~ 1/r



 in (Balh et al 83)
• training with 1.5 million words
• 23% of the trigrams from another part of the

same corpus were previously unseen.
 So MLE alone is not good enough estimator

Problem with MLE: data sparseness (con’t)



Discounting or Smoothing

 MLE is usually unsuitable for NLP because of the
sparseness of the data

 We need to allow for possibility of seeing events not
seen in training

 Must use a Discounting or Smoothing  technique

 Decrease the probability of previously seen events to
leave a little bit of probability for previously unseen
events



Statistical Estimators
 Maximum Likelihood Estimation (MLE)
 Smoothing

• Add one
• Add delta
• Witten-Bell smoothing

 Combining Estimators
• Katz’s Backoff



Add-one Smoothing (Laplace’s law)

 Pretend we have seen every n-gram at
least once

 Intuitively:
• new_count(n-gram) = old_count(n-gram) + 1

 The idea is to give a little bit of the
probability space to unseen events



Add-one: Example
 I want  to  eat Chinese food lunch … Total (N ) 

I 8 1087 0 13 0 0 0  3437 

want 3 0 786 0 6 8 6  1215 

to 3 0 10 860 3 0 12  3256 

eat 0 0 2 0 19 2 52  938 

Chinese 2 0 0 0 0 120 1  213 

food 19 0 17 0 0 0 0  1506 

lunch 4 0 0 0 0 1 0  459 

…          
 

 

unsmoothed bigram counts:

 I want to eat Chinese  food lunch … Total 

I .0023 
(8/3437)  

.32 0 .0038  
(13/3437) 

0 0 0  1 

want .0025  0 .65 0 .0049  .0066  .0049   1 

to .00092  0 .0031 .26 .00092  0 .0037   1 

eat 0 0 .0021 0 .020 .0021 .055   1 

Chinese  .0094  0 0 0 0 .56 .0047   1 

food .013 0 .011 0 0 0 0  1 

lunch .0087  0 0 0 0 .0022  0  1 

…          

 
 

unsmoothed normalized bigram probabilities:

1s
t  w

or
d
2nd word



Add-one: Example (con’t)
 I want  to  eat Chinese food lunch … Total ( N+V) 

I 8   9 1087  
1088 

1 14 1 1 1  3437   
5053 

want 3  4 1 787 1 7 9 7  2831 

to 4 1 11 861 4 1 13  4872 

eat 1 1 23 1 20 3 53  2554 

Chinese 3 1 1 1 1 121 2  1829 

food 20 1 18 1 1 1 1  3122 

lunch 5 1 1 1 1 2 1  2075 
 

add-one smoothed bigram counts:

 I want to eat Chinese food lunch … Total 

I .0018 
(9/5053) 

.22 .0002 .0028 
(14/5053) 

.0002 .0002 .0002  1 

want .0014 .00035 .28 .00035 .0025 .0032 .0025  1 

to .00082 .00021 .0023 .18 .00082 .00021 .0027  1 

eat .00039 .00039 .0012 .00039 .0078 .0012 .021  1 

Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011  1 

food .0064 .00032 .0058 .00032 .00032 .00032 .00032  1 

lunch .0024 .00048 .00048 .00048 .00048 .0022 .00048  1 

 
 

add-one normalized bigram probabilities:



Add-one, more formally

N: nb of n-grams in training corpus -
B: nb of bins (of possible n-grams)

B = V^2 for bigrams
    B = V^3 for trigrams etc.
    where V is size of vocabulary

PAdd1(w1 w2 …wn) = C (w1 w2 …wn)+1
N +  B



Problem with add-one smoothing
 bigrams starting with Chinese are boosted by a factor of

8 ! (1829 / 213)
 I want to eat Chinese  food  lunch  … Total (N)  
I 8 1087 0 13 0 0 0  3437 
want 3 0 786 0 6 8 6  1215 
to 3 0 10 860 3 0 12  3256 
eat 0 0 2 0 19 2 52  938 
Chinese  2 0 0 0 0 120 1  213 
food  19 0 17 0 0 0 0  1506 
lunch  4 0 0 0 0 1 0  459 

 

 

 I want to eat Chinese food lunch … Total (N+V) 

I 9 1088 1 14 1 1 1  5053 

want 4 1 787 1 7 9 7  2831 

to 4 1 11 861 4 1 13  4872 

eat 1 1 23 1 20 3 53  2554 

Chinese 3 1 1 1 1 121 2  1829 

food 20 1 18 1 1 1 1  3122 

lunch 5 1 1 1 1 2 1  2075 
 

unsmoothed bigram counts:

add-one smoothed bigram counts:

1s
t  w

or
d

1s
t  w

or
d



Problem with add-one smoothing (con’t)
 Data from the AP from (Church and Gale, 1991)

• Corpus of 22,000,000 word tokens
• Vocabulary of 273,266 words (i.e. 74,674,306,760 possible bigrams - or

bins)
• 74,671,100,000 bigrams were unseen
• And each unseen bigram was given a frequency of 0.000295

0.001774.215
0.001473.234
0.001182.243
0.0088841.252
0.0005890.4481
0.0002950.0000270

fadd-onefempiricalfMLE

too high

too low

Freq. from
training data

Freq. from
held-out data

Add-one
smoothed freq.

 Total probability mass given to unseen bigrams =
(74,671,100,000 x  0.000295) / 22,000,000 ~0.9996 !!!!



Problem with add-one smoothing

 every previously unseen n-gram is given a low
probability, but there are so many of them that too much
probability mass is given to unseen events

 adding 1 to frequent bigram, does not change much, but
adding 1 to low bigrams (including unseen ones) boosts
them too much !

 In NLP applications that are very sparse, Laplace’s Law
actually gives far too much of the probability space to
unseen events.



Add-delta smoothing (Lidstone’s law)
 instead of adding 1, add some other (smaller) positive value 

 Expected Likelihood Estimation (ELE)  = 0.5
 Maximum Likelihood Estimation  = 0
 Add one (Laplace)   = 1

 better than add-one, but still…

PAddD(w1 w2 …wn) =  C (w1 w2 …wn) +  
N +    B



Witten-Bell smoothing

 intuition:
• An unseen n-gram is one that just did not occur yet
• When it does happen, it will be its first occurrence
• So give to unseen n-grams the probability of seeing a

new n-gram
 Two cases discussed

• Unigram
• Bigram (more interesting)



Witten-Bell: unigram case

 N: number of tokens (word
occurrences in this case)

 T: number of types (diff.
observed words) - can be
different than V (number of
words in dictionary

 Total probability mass assigned
to zero-frequency N-grams:

:

 Z: number of unseen N-gramms

 Prob. unseen

 Prob. seen



Witten-Bell: bigram case
condition type counts on word

 N(w): # of bigrams tokens starting with w
 T(w): # of different observed bigrams  starting with w
 Total probability mass assigned to zero-frequency N-grams:

 Z: number of unseen N-gramms



Witten-Bell: bigram case
condition type counts on word

 Prob. unseen

 Prob. seen



The restaurant example
 The original counts were:

 T(w)= number of different seen bigrams types starting with w
 we have a vocabulary of 1616 words, so we can compute
 Z(w)= number of unseen bigrams types starting with w

Z(w) = 1616 - T(w)

 N(w) = number of bigrams tokens starting with w

 I want to eat Chine
se 

food lunch … N(w) 
seen bigram 
tokens 

T(w) 
seen bigram 
types 

Z(w) 
unseen 
bigram types 

I 8 1087 0 13 0 0 0  3437 95 1521 
want 3 0 786 0 6 8 6  1215 76 1540 
to 3 0 10 860 3 0 12  3256 130 1486 
eat 0 0 2 0 19 2 52  938 124 1492 
Chinese 2 0 0 0 0 120 1  213 20 1592 
food 19 0 17 0 0 0 0  1506 82 534 
lunch 4 0 0 0 0 1 0  459 45 1571 

 
 



Witten-Bell smoothed probabilities

 I want to  eat Chinese food lunch … Total 

I .0022 
(7.78/3437) 

.3078 .000002 .0037 
 

.000002 .000002 .000002  1 

want .00230 .00004 .6088 .00004 .0047 .0062 .0047  1 

to .00009 .00003 .0030 .2540 .00009 .00003 .0038  1 

eat .00008 .00008 .0021 .00008 .0179 .0019 .0490  1 

Chinese .00812 .00005 .00005 .00005 .00005 .5150 .0042  1 

food .0120 .00004 .0107 .00004 .00004 .00004 .00004  1 

lunch .0079 .00006 .00006 .00006 .00006 .0020 .00006  1 
 

 

Witten-Bell normalized bigram probabilities:



Witten-Bell smoothed count

 I want  to  eat Chinese food lunch … Total 

I 7.78 1057.76 .061 12.65 .06 .06 .06  3437   

want 2.82 .05 739.73 .05 5.65 7.53 5.65  1215 

to 2.88 .08 9.62 826.98 2.88 .08 12.50  3256 

eat .07 .07 19.43 .07 16.78 1.77 45.93  938 

Chinese 1.74 .01 .01 .01 .01 109.70 .91  213 

food 18.02 .05 16.12 .05 .05 .05 .05  1506 

lunch 3.64 .03 .03 .03 .03 0.91 .03  459 
 

 

•  the count of the unseen bigram “I lunch”

• the count of the seen bigram “want to”

Witten-Bell smoothed bigram counts:

T(I)
Z(I)

x N(I)
N(I) + T(I)

=  95
1521

x 3437
3437 + 95

 =  0.06

count(want to)x N(want)
N(want) + T(want)

=   786x 1215
1215 + 76

 =  739.73



Combining Estimators
 so far, we gave the same probability to all unseen n-

grams
• we have never seen the bigrams

 journal of        Punsmoothed(of |journal) = 0
 journal from Punsmoothed(from |journal) = 0
 journal never Punsmoothed(never |journal) = 0

• all models so far will give the same probability to all 3
bigrams

 but intuitively, “journal of” is more probable because...
• “of” is more frequent than “from” & “never”
• unigram probability P(of) > P(from) > P(never)



 observation:
• unigram model suffers less from data sparseness than

bigram model
• bigram model suffers less from data sparseness than

trigram model
• …

 so use a lower model estimate, to estimate
probability of unseen n-grams

 if we have several models of how the history
predicts what comes next, we can combine them in
the hope of producing an even better model

Combining Estimators (con’t)



Simple Linear Interpolation
 Solve the sparseness in a trigram model by mixing with

bigram and unigram models
 Also called:

• linear interpolation,
• finite mixture models
• deleted interpolation

 Combine linearly
Pli(wn|wn-2,wn-1) = 1P(wn) + 2P(wn|wn-1) + 3P(wn|wn-2,wn-1)

• where 0 i 1 and i i =1



Smoothing of Conditional Probabilities
p(Angeles | to, Los)

If „to Los Angeles“ is not in the training corpus,
the smoothed probability p(Angeles | to, Los) is
identical to p(York | to, Los).
However, the actual probability is probably close to
the bigram probability p(Angeles | Los).

Backoff Smoothing



(Wrong) Back-off Smoothing of trigram probabilities

if  C(w‘, w‘‘, w) > 0
P*(w | w‘, w‘‘) = P(w | w‘, w‘‘)

else if  C(w‘‘, w) > 0
P*(w | w‘, w‘‘) = P(w | w‘‘)

else if  C(w) > 0
P*(w | w‘, w‘‘) = P(w)

else
P*(w | w‘, w‘‘) = 1 / #words

Backoff Smoothing



Problem: not a probability distribution

Solution:
Combination of Back-off and frequency discounting

P(w | w1,...,wk) = C*(w1,...,wk,w) / N   if  C(w1,...,wk,w) > 0
else

P(w | w1,...,wk) = (w1,...,wk) P(w | w2,...,wk)

Backoff Smoothing



The backoff factor is defined s.th. the probability
mass assigned to unobserved trigrams

          (w1,...,wk) P(w | w2,...,wk))                  w: C(w
1
,...,w

k
,w)=0

is identical to the probability mass discounted from
the observed trigrams.
       1-           P(w | w1,...,wk))                  w: C(w

1
,...,w

k
,w)>0

Therefore, we get:
(w1,...,wk)  = (  1 -          P(w | w1,...,wk)) / (1  -            P(w | w2,...,wk)) 
                                   w: C(w

1
,...,w

k
,w)>0                                         w: C(w

1
,...,w

k 
,w)>0

Backoff Smoothing



Spelling Correction

 They are leaving in about fifteen minuets to go to her house.
 The study was conducted mainly be John Black.
 Hopefully, all with continue smoothly in my absence.
 Can they lave him my messages?
 I need to notified the bank of….
 He is trying to fine out.



Spelling Correction

 One possible method using N-gramms
 Sentence w1, …, wn
 Alternatives  {v1,…vm} may exist for wk
• Words sounding similar
• Words close (edit-distance)

 For all such alternatives compute
 P(w1, …, wk-1, vi,wk+1 ,…, wn) and

choose best one



Other applications of LM

 Author / Language identification

 hypothesis: texts that resemble each other (same author,
same language) share similar characteristics
• In English character sequence “ing”  is more probable than in

French

 Training phase:
• construction of the language model
• with pre-classified documents (known language/author)

 Testing phase:
• evaluation of unknown text (comparison with language model)



Example: Language identification

 bigram of characters
• characters = 26 letters (case insensitive)
• possible variations: case sensitivity, punctuation,

beginning/end of sentence marker, …



 A B C D … Y Z 

A 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

B 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

C 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

D 0.0042 0.0014 0.0014 0.0014 … 0.0014 0.0014 

E 0.0097 0.0014 0.0014 0.0014 … 0.0014 0.0014 

… … … … … … … 0.0014 

Y 0.0014 0.0014 0.0014 0.0014 … 0.0014 0.0014 

Z 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 

 
 1. Train a language model for English:

2. Train a language model for French

3. Evaluate probability of a sentence with LM-English & LM-French

4. Highest probability -->language of sentence



Claim

 A useful part of the knowledge needed to allow Word
Prediction can be captured using simple statistical
techniques.

 Compute:
- probability of a sequence
- likelihood of words co-occurring

 It can be useful to do this.


