Advanced Artificial Intelligence

Part ll. Statistical NLP

Introduction and Grammar Models

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Some slides taken from Helmut Schmid, Rada Mihalcea, Bonnie Dorr,
Leila Kosseim, Peter Flach and others

Contents

Some natural language processing tasks
Non-probabilistic NLP models

* Regular grammars and finite state automata
* Context-Free Grammars
» Definite Clause Grammars

Motivation for statistical NLP
Overview of the rest of this part

Language and sequences

= Natural language processing

Is concerned with the analysis of
sequences of words / sentences

Construction of language models

= Two types of models

Non-probabilistic
Probabillistic

Key NLP Problem: Ambiguity

Human Language is highly ambiguous at all levels

* acoustic level
recognize speech vs. wreck a nice beach

- morphological level
saw: to see (past), saw (noun), to saw (present, inf)

» syntactic level
| saw the man on the hill with a telescope

« semantic level
One book has to be read by every student

Language Model

= A formal model about language

= Two types

Non-probabilistic

= Allows one to compute whether a certain sequence
(sentence or part thereof) is possible

= Often grammar based

Probabilistic

= Allows one to compute the probability of a certain
sequence

= Often extends grammars with probabilities

Example of bad language model

2
s

‘né’?“&

SR

u?gj
R et

RS
i

A bad language model

by Jim Unger

A bad language model

.. AND NOTHING
BUT THE TRUTH.

© Jim Unger/Dist by United Media, Jan. 30/00

e
R

A good language model

= Non-Probabillistic

“| swear to tell the truth” is possible

“| swerve to smell de soup” is impossible
= Probabillistic

P(l swear to tell the truth) ~ .0001
P(l swerve to smell de soup) ~ 0

Why language models ?

= Consider a Shannon Game

Predicting the next word in the sequence
= Statistical natural language
= The cat is thrown out of the ...
= The large green ...
= Sue swallowed the large green ...

= Model at the sentence level

Applications

Spelling correction
Mobile phone texting
Speech recognition
Handwriting recognition
Disabled users

Spelling errors

They are leaving in about fifteen minuets to go to her
house.

The study was conducted mainly be John Black.
Hopefully, all with continue smoothly in my absence.
Can they /ave him my messages?

| need to notified the bank of....

He is trying to fine out.

Handwriting recognition

= Assume a note is given to a bank teller, which

the teller reads as | have a gub. (cf. Woody
Allen)

= NLP to the rescue
* gub is not a word

e gun, gum, Gus, and gull are words, but gun has a
higher probability in the context of a bank

For Spell Checkers

= Collect list of commonly substituted words
» piece/peace, whether/weather, their/there ...

= Example:
“On Tuesday, the whether ...”
“‘On Tuesday, the weather ...”

Another dimension in language
models

= Do we mainly want to infer (probabilities)
of legal sentences / sequences ?

» So far

= Or, do we want to infer properties of
these sentences ?

* E.g., parse tree, part-of-speech-tagging
* Needed for understanding NL
* Let's look at some tasks

Sequence Tagging

= Part-of-speech tagging
* He drives with his bike
N V PR PN N

noun, verb, preposition, pronoun, noun

= Text extraction
* The job is that of a programmer
« X X X X X X JobType

* The seminar is taking place from 15.00 to 16.00
« X X X X X X Start End

Sequence Tagging

= Predicting the secondary structure
of proteins, MRNA, ...

« X=A,F,A,R,L,M,M, A, ..
* Y=he,he,st,st,st,he,st,he, ..

A
e {“q“b. \)
R :

Parsing

= Given a sentence, find its parse tree
= [mportant step in understanding NL

N T

N N ¥ NP N \% PP
Rice flies like N Rice flies P NP
N

sand like

sand

Parsing

= |n bioinformatics, allows to predict
(elements of) structure from sequence

Language models based on
Grammars

= Grammar Types
Regular grammars and Finite State Automata
Context-Free Grammars
Definite Clause Grammars
= A particular type of Unification Based Grammar (Prolog)
= Distinguish lexicon from grammar

Lexicon (dictionary) contains information about
words, e.g.
= word - possible tags (and possibly additional information)
= flies - V(erb) - N(oun)
Grammar encode rules

Grammars and parsing

Syntactic level best understood and formalized

Derivation of grammatical structure: parsing
(more than just recognition)

Result of parsing mostly parse tree:
showing the constituents of a sentence, e.g. verb
or noun phrases

Syntax usually specified in terms of a grammar
consisting of grammar rules

Regular Grammars and
Finite State Automata

Lexical information - which = As regular grammar
words are 7 - S ->[Det]S1 %/[]: terminal
* Det(erminer) . S1->[N]S2
* N(oun) . i .
* Vi (intransitive verb) - no _82 > VI
argument = |Lexicon
* Pn (pronoun) * The -Det
« Vit (transitive verb) - takes an « Cat -N
argument - Slept - Vi

Adj (adjective)

Now accept ied - vi

The cat slept
Det N Vi

) (B0

Finite State Automaton

= Sentences
John smiles - Pn Vi
The cat disappeared - Det N Vi
These new shoes hurt - Det Adj N Vi
John liked the old cat PN Vt Det Adj N

Phrase structure

S
/\
NP VP
T T
D N \"4 NP PP
D N P NP
/\
D N

the dog chased a cat into the garden

Notation

S: sentence

D or Det: Determiner (e.g., articles)
N: noun

V: verb

P: preposition

NP: noun phrase

VP: verb phrase

PP: prepositional phrase

2 0
v

HI<Z2Z2Z200M0MJS
‘g O

Context Free Grammar

-> NP VP
-> D N

-> V NP

-> V NP PP
-> P NP

-> [the]

-> [a]

-> [dog]

-> [cat]

-> [garden]
-> [chased]
-> [saw]

-> [into]

Terminals ~ Lexicon

Phrase structure

= Formalism of context-free grammars
* Nonterminal symbols: S, NP, VP, ...
« Terminal symbols: dog, cat, saw, the, ...
= Recursion
« ,The girl thought the dog chased the cat”

VP ->V, S
N -> [girl]
v -> [thought]

Top-down parsing

S -> NP VP

S ->Det N VP

S ->The N VP

S -> The dog VP

S -> The dog V NP

S -> The dog chased NP

S -> The dog chased Det N
S-> The dog chased the N
S-> The dog chased the cat

Context-free grammar

S -=>
-—>
-—>
-—>
-—>
-—>
Art -—>
Adj -=>
Adj -=>
PN -->
N -->
VI -->
VT -->

PN. $Proper noun
Art, Adj, N.

Art, N.

VI. $intransitive verb
VT, . 3transitive verb
[the] .

[lazy] .

[rapid].

[achilles].

[turtle].

[sleeps].

[beats].

Parse tree

S
/ \
NP VP
VAN S AN
Art aAdj N vVt NP
\
PN

the rapid turtle beats achilles

Definite Clause Grammars
Non-terminals may have arguments

S -=> NP (N) ,VP(N) .
NP (N) --> Art (N) ,N(N).
VP (N) --> VI(N).

Art (singular) --> [a].

Art (singular) --> [the].

Art (plural) --> [the].

N (singular) --> [turtle].
N(plural) --> [turtles].
VI (singular) --> [sleeps].

VI (plural) --> [sleep].

Number Agreement

DCGs

= Non-terminals may have arguments

Variables (start with capital)
= E.g. Number, Any

Constants (start with lower case)
= E.g. singular, plural

Structured terms (start with lower case, and take
arguments themselves)
= E.g. vp(V,NP)
= Parsing needs to be adapted
Using unification

Unification in a nutshell
(cf. Al course)

= Substitutions

Q — {Vl/tl: sery Vn/tn}
with Variables V;; Terms ¢;
E.g. {Num / singular }
{T /vp(V,NP)}
= Applying substitution
« Simultaneously replace variables by
corresponding terms
* S(Num) {Num / singular } = S(singular)

Unification

= Take two non-terminals with arguments and
compute (most general) substitution that
makes them identical, e.g.,
* Art(singular) and Art(Num)
= Gives { Num / singular }

* Art(singular) and Art(plural)
= Fails

* Art(Num1) and Art(Num2)
= {Num1 / Num2}

* PN(Num, accusative) and PN(singular, Case)
= {Num/singular, Case/accusative}

Parsing with DCGs

Now require successful unification at each
step

S -> NP(N), VP(N)

S -> Art(N), N(N), VP(N) {N/singular}
S ->a N(singular), VP(singular)

S -> a turtle VP(singular)

S -> a turtle sleeps

S-> a turtle sleep falils

Case Marking

PN (singular,nominative) -->
PN (singular,6accusative) -->
PN (plural,nominative) -->
PN (plural,accusative) -->
S ——=> NP (Number,nominative) , NP (Number)

VP (Number) --> V(Number), VP (Any,accusative)
VP (Number,Case) --> PN (Number, Case)
VP (Number, Any) --> Det, N (Number)

He sees her. She sees him. They see her.

But not Them see he.

DCGs

= Are strictly more expressive than CFGs
= Can represent for instance

* S(N)-> A(N), B(N), C(N)
© AQ) ->]
* B(O) >
+ C(0) ->]
A(s(N)) -> A(N), [A]
* B(s(N)) -> B(N), [B]
* C(s(N)) -> C(N), [C]

Probabilistic Models

= Traditional grammar models are very rigid,
essentially a yes / no decision

= Probabilistic grammars
Define a probability models for the data
Compute the probability of each alternative
Choose the most likely alternative

= |lustrate on
Shannon Game

Spelling correction
Parsing

Sequences are omni-present

= Therefore the techniques we will see
also apply to

* Bioinformatics

= DNA, proteins, mRNA, ... can all be
represented as strings

* Robotics
= Sequences of actions, states, ...

Rest of the Course

= Limitations traditional grammar models motivate
probabilistic extensions
Regular grammars and Finite State Automata
= All use principles of Part | on Graphical Models
= Markov Models using n-gramms
= (Hidden) Markov Models

= Conditional Random Fields
As an example of using undirected graphical models

Probabilistic Context Free Grammars
Probabilistic Definite Clause Grammars

