
Part II. Statistical NLP

Advanced Artificial Intelligence

Introduction and Grammar Models

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Some slides taken from Helmut Schmid, Rada Mihalcea, Bonnie Dorr,
Leila Kosseim, Peter Flach and others

Contents

 Some natural language processing tasks
 Non-probabilistic NLP models

• Regular grammars and finite state automata
• Context-Free Grammars
• Definite Clause Grammars

 Motivation for statistical NLP
 Overview of the rest of this part

Language and sequences

 Natural language processing
• Is concerned with the analysis of

sequences of words / sentences
• Construction of language models

 Two types of models
• Non-probabilistic
• Probabilistic

Human Language is highly ambiguous at all levels

• acoustic level
recognize speech vs. wreck a nice beach

• morphological level
saw: to see (past), saw (noun), to saw (present, inf)

• syntactic level
I saw the man on the hill with a telescope

• semantic level
One book has to be read by every student

Key NLP Problem: Ambiguity

Language Model

 A formal model about language
 Two types

• Non-probabilistic
 Allows one to compute whether a certain sequence

(sentence or part thereof) is possible
 Often grammar based

• Probabilistic
 Allows one to compute the probability of a certain

sequence
 Often extends grammars with probabilities

Example of bad language model

A bad language model

A bad language model

A good language model

 Non-Probabilistic
• “I swear to tell the truth” is possible
• “I swerve to smell de soup” is impossible

 Probabilistic
• P(I swear to tell the truth) ~ .0001
• P(I swerve to smell de soup) ~ 0

Why language models ?

 Consider a Shannon Game
• Predicting the next word in the sequence

 Statistical natural language ….
 The cat is thrown out of the …
 The large green …
 Sue swallowed the large green …
 …

 Model at the sentence level

Applications

 Spelling correction
 Mobile phone texting
 Speech recognition
 Handwriting recognition
 Disabled users
 …

Spelling errors

 They are leaving in about fifteen minuets to go to her
house.

 The study was conducted mainly be John Black.
 Hopefully, all with continue smoothly in my absence.
 Can they lave him my messages?
 I need to notified the bank of….
 He is trying to fine out.

Handwriting recognition

 Assume a note is given to a bank teller, which
the teller reads as I have a gub. (cf. Woody
Allen)

 NLP to the rescue ….
• gub is not a word
• gun, gum, Gus, and gull are words, but gun has a

higher probability in the context of a bank

For Spell Checkers

 Collect list of commonly substituted words
• piece/peace, whether/weather, their/there ...

 Example:
“On Tuesday, the whether …’’
“On Tuesday, the weather …”

Another dimension in language
models

 Do we mainly want to infer (probabilities)
of legal sentences / sequences ?
• So far

 Or, do we want to infer properties of
these sentences ?
• E.g., parse tree, part-of-speech-tagging
• Needed for understanding NL

 Let’s look at some tasks

Sequence Tagging

 Part-of-speech tagging
• He drives with his bike
• N V PR PN N
noun, verb, preposition, pronoun, noun

 Text extraction
• The job is that of a programmer
• X X X X X X JobType
• The seminar is taking place from 15.00 to 16.00
• X X X X X X Start End

Sequence Tagging

 Predicting the secondary structure
of proteins, mRNA, …
• X = A,F,A,R,L,M,M,A,…
• Y = he,he,st,st,st,he,st,he, …

Parsing

 Given a sentence, find its parse tree
 Important step in understanding NL

Parsing

 In bioinformatics, allows to predict
(elements of) structure from sequence

Language models based on
Grammars

 Grammar Types
• Regular grammars and Finite State Automata
• Context-Free Grammars
• Definite Clause Grammars

 A particular type of Unification Based Grammar (Prolog)

 Distinguish lexicon from grammar
• Lexicon (dictionary) contains information about

words, e.g.
 word - possible tags (and possibly additional information)
 flies - V(erb) - N(oun)

• Grammar encode rules

Grammars and parsing
 Syntactic level best understood and formalized
 Derivation of grammatical structure: parsing

(more than just recognition)
 Result of parsing mostly parse tree:

showing the constituents of a sentence, e.g. verb
or noun phrases

 Syntax usually specified in terms of a grammar
consisting of grammar rules

Regular Grammars and
Finite State Automata

 Lexical information - which
words are ?
• Det(erminer)
• N(oun)
• Vi (intransitive verb) - no

argument
• Pn (pronoun)
• Vt (transitive verb) - takes an

argument
• Adj (adjective)

 Now accept
• The cat slept
• Det N Vi

 As regular grammar
• S -> [Det] S1 % [] : terminal

• S1 -> [N] S2
• S2 -> [Vi]

 Lexicon
• The - Det
• Cat - N
• Slept - Vi
• …

Finite State Automaton

 Sentences
• John smiles - Pn Vi
• The cat disappeared - Det N Vi
• These new shoes hurt - Det Adj N Vi
• John liked the old cat PN Vt Det Adj N

Phrase structure

S

NP

D N

VP

NPV

D N

PP

P NP

D N

the dog chased a cat into the garden

Notation
 S: sentence
 D or Det: Determiner (e.g., articles)
 N: noun
 V: verb
 P: preposition
 NP: noun phrase
 VP: verb phrase
 PP: prepositional phrase

Context Free Grammar
S -> NP VP
NP -> D N
VP -> V NP
VP -> V NP PP
PP -> P NP
D -> [the]
D -> [a]
N -> [dog]
N -> [cat]
N -> [garden]
V -> [chased]
V -> [saw]
P -> [into]

Terminals ~ Lexicon

Phrase structure

 Formalism of context-free grammars
• Nonterminal symbols: S, NP, VP, ...
• Terminal symbols: dog, cat, saw, the, ...

 Recursion
• „The girl thought the dog chased the cat“

VP -> V, S
N -> [girl]
V -> [thought]

Top-down parsing

 S -> NP VP
 S -> Det N VP
 S -> The N VP
 S -> The dog VP
 S -> The dog V NP
 S -> The dog chased NP
 S -> The dog chased Det N
 S-> The dog chased the N
 S-> The dog chased the cat

Context-free grammar
SS --> --> NPNP,,VPVP..
NPNP --> --> PNPN. . %Proper noun%Proper noun
NPNP --> Art, --> Art, AdjAdj, N., N.
NPNP --> Art,N.--> Art,N.
VPVP --> VI. --> VI. %intransitive verb%intransitive verb
VPVP --> VT, --> VT, NPNP. . %transitive verb%transitive verb
ArtArt --> [the].--> [the].
AdjAdj --> [lazy].--> [lazy].
AdjAdj --> [rapid].--> [rapid].
PNPN --> [--> [achillesachilles].].
NN --> [turtle].--> [turtle].
VIVI --> [sleeps].--> [sleeps].
VTVT --> [beats].--> [beats].

Parse tree

 SS

 NPNP VPVP

 ArtArt Adj Adj NN Vt Vt NPNP

 PN PN

achillesachillesbeatsbeatsturtleturtlerapidrapidthethe

Definite Clause Grammars
Non-terminals may have arguments

SS --> --> NPNP((NN),),VPVP((NN).).

NP(NP(NN)) --> Art(--> Art(NN),N(),N(NN).).

VP(VP(NN)) --> VI(--> VI(NN).).

Art(Art(singularsingular)) --> [a].--> [a].

Art(Art(singularsingular)) --> [the].--> [the].

Art(Art(pluralplural)) --> [the].--> [the].

N(N(singularsingular)) --> [turtle].--> [turtle].

N(N(pluralplural)) --> [turtles].--> [turtles].

VI(VI(singularsingular)) --> [sleeps].--> [sleeps].

VI(VI(pluralplural)) --> [sleep].--> [sleep].

Number Agreement

DCGs

 Non-terminals may have arguments
• Variables (start with capital)

 E.g. Number, Any
• Constants (start with lower case)

 E.g. singular, plural
• Structured terms (start with lower case, and take

arguments themselves)
 E.g. vp(V,NP)

 Parsing needs to be adapted
• Using unification

Unification in a nutshell
(cf. AI course)

 Substitutions

 E.g. {Num / singular }
 {T / vp(V,NP)}

 Applying substitution
• Simultaneously replace variables by

corresponding terms
• S(Num) {Num / singular } = S(singular)

Unification

 Take two non-terminals with arguments and
compute (most general) substitution that
makes them identical, e.g.,
• Art(singular) and Art(Num)

 Gives { Num / singular }
• Art(singular) and Art(plural)

 Fails
• Art(Num1) and Art(Num2)

 {Num1 / Num2}
• PN(Num, accusative) and PN(singular, Case)

 {Num/singular, Case/accusative}

Parsing with DCGs

 Now require successful unification at each
step

 S -> NP(N), VP(N)
 S -> Art(N), N(N), VP(N) {N/singular}
 S -> a N(singular), VP(singular)
 S -> a turtle VP(singular)
 S -> a turtle sleeps

 S-> a turtle sleep fails

Case Marking
PNPN(singular,nominative)(singular,nominative) --> --> [he];[she][he];[she]

PNPN(singular,accusative)(singular,accusative) --> --> [him];[her][him];[her]

PNPN(plural,nominative)(plural,nominative) --> --> [they][they]

PNPN(plural,accusative)(plural,accusative) --> --> [them][them]

S S --> NP(Number,nominative), NP(Number)--> NP(Number,nominative), NP(Number)

VP(Number) --> V(Number), VP(Any,accusative)VP(Number) --> V(Number), VP(Any,accusative)

VP(Number,Case) --> VP(Number,Case) --> PNPN(Number,Case)(Number,Case)

VP(Number,Any) --> VP(Number,Any) --> DetDet, N(Number), N(Number)

He sees her. She sees him. They see her.

But not Them see he.

DCGs

 Are strictly more expressive than CFGs
 Can represent for instance

• S(N) -> A(N), B(N), C(N)
• A(0) -> []
• B(0) -> []
• C(0) -> []
• A(s(N)) -> A(N), [A]
• B(s(N)) -> B(N), [B]
• C(s(N)) -> C(N), [C]

Probabilistic Models

 Traditional grammar models are very rigid,
• essentially a yes / no decision

 Probabilistic grammars
• Define a probability models for the data
• Compute the probability of each alternative
• Choose the most likely alternative

 Ilustrate on
• Shannon Game
• Spelling correction
• Parsing

Sequences are omni-present

 Therefore the techniques we will see
also apply to
• Bioinformatics

 DNA, proteins, mRNA, … can all be
represented as strings

• Robotics
 Sequences of actions, states, …

• …

Rest of the Course

 Limitations traditional grammar models motivate
probabilistic extensions
• Regular grammars and Finite State Automata

 All use principles of Part I on Graphical Models
 Markov Models using n-gramms
 (Hidden) Markov Models
 Conditional Random Fields

• As an example of using undirected graphical models
• Probabilistic Context Free Grammars
• Probabilistic Definite Clause Grammars

