
Part II. Statistical NLP

Advanced Artificial Intelligence

Introduction and Grammar Models

Wolfram Burgard, Luc De Raedt, Bernhard
Nebel, Lars Schmidt-Thieme

Some slides taken from Helmut Schmid, Rada Mihalcea, Bonnie Dorr,
Leila Kosseim, Peter Flach and others

Contents

 Some natural language processing tasks
 Non-probabilistic NLP models

• Regular grammars and finite state automata
• Context-Free Grammars
• Definite Clause Grammars

 Motivation for statistical NLP
 Overview of the rest of this part

Language and sequences

 Natural language processing
• Is concerned with the analysis of

sequences of words / sentences
• Construction of language models

 Two types of models
• Non-probabilistic
• Probabilistic

Human Language is highly ambiguous at all levels

• acoustic level
recognize speech vs. wreck a nice beach

• morphological level
saw: to see (past), saw (noun), to saw (present, inf)

• syntactic level
I saw the man on the hill with a telescope

• semantic level
One book has to be read by every student

Key NLP Problem: Ambiguity

Language Model

 A formal model about language
 Two types

• Non-probabilistic
 Allows one to compute whether a certain sequence

(sentence or part thereof) is possible
 Often grammar based

• Probabilistic
 Allows one to compute the probability of a certain

sequence
 Often extends grammars with probabilities

Example of bad language model

A bad language model

A bad language model

A good language model

 Non-Probabilistic
• “I swear to tell the truth” is possible
• “I swerve to smell de soup” is impossible

 Probabilistic
• P(I swear to tell the truth) ~ .0001
• P(I swerve to smell de soup) ~ 0

Why language models ?

 Consider a Shannon Game
• Predicting the next word in the sequence

 Statistical natural language ….
 The cat is thrown out of the …
 The large green …
 Sue swallowed the large green …
 …

 Model at the sentence level

Applications

 Spelling correction
 Mobile phone texting
 Speech recognition
 Handwriting recognition
 Disabled users
 …

Spelling errors

 They are leaving in about fifteen minuets to go to her
house.

 The study was conducted mainly be John Black.
 Hopefully, all with continue smoothly in my absence.
 Can they lave him my messages?
 I need to notified the bank of….
 He is trying to fine out.

Handwriting recognition

 Assume a note is given to a bank teller, which
the teller reads as I have a gub. (cf. Woody
Allen)

 NLP to the rescue ….
• gub is not a word
• gun, gum, Gus, and gull are words, but gun has a

higher probability in the context of a bank

For Spell Checkers

 Collect list of commonly substituted words
• piece/peace, whether/weather, their/there ...

 Example:
“On Tuesday, the whether …’’
“On Tuesday, the weather …”

Another dimension in language
models

 Do we mainly want to infer (probabilities)
of legal sentences / sequences ?
• So far

 Or, do we want to infer properties of
these sentences ?
• E.g., parse tree, part-of-speech-tagging
• Needed for understanding NL

 Let’s look at some tasks

Sequence Tagging

 Part-of-speech tagging
• He drives with his bike
• N V PR PN N
noun, verb, preposition, pronoun, noun

 Text extraction
• The job is that of a programmer
• X X X X X X JobType
• The seminar is taking place from 15.00 to 16.00
• X X X X X X Start End

Sequence Tagging

 Predicting the secondary structure
of proteins, mRNA, …
• X = A,F,A,R,L,M,M,A,…
• Y = he,he,st,st,st,he,st,he, …

Parsing

 Given a sentence, find its parse tree
 Important step in understanding NL

Parsing

 In bioinformatics, allows to predict
(elements of) structure from sequence

Language models based on
Grammars

 Grammar Types
• Regular grammars and Finite State Automata
• Context-Free Grammars
• Definite Clause Grammars

 A particular type of Unification Based Grammar (Prolog)

 Distinguish lexicon from grammar
• Lexicon (dictionary) contains information about

words, e.g.
 word - possible tags (and possibly additional information)
 flies - V(erb) - N(oun)

• Grammar encode rules

Grammars and parsing
 Syntactic level best understood and formalized
 Derivation of grammatical structure: parsing

(more than just recognition)
 Result of parsing mostly parse tree:

showing the constituents of a sentence, e.g. verb
or noun phrases

 Syntax usually specified in terms of a grammar
consisting of grammar rules

Regular Grammars and
Finite State Automata

 Lexical information - which
words are ?
• Det(erminer)
• N(oun)
• Vi (intransitive verb) - no

argument
• Pn (pronoun)
• Vt (transitive verb) - takes an

argument
• Adj (adjective)

 Now accept
• The cat slept
• Det N Vi

 As regular grammar
• S -> [Det] S1 % [] : terminal

• S1 -> [N] S2
• S2 -> [Vi]

 Lexicon
• The - Det
• Cat - N
• Slept - Vi
• …

Finite State Automaton

 Sentences
• John smiles - Pn Vi
• The cat disappeared - Det N Vi
• These new shoes hurt - Det Adj N Vi
• John liked the old cat PN Vt Det Adj N

Phrase structure

S

NP

D N

VP

NPV

D N

PP

P NP

D N

the dog chased a cat into the garden

Notation
 S: sentence
 D or Det: Determiner (e.g., articles)
 N: noun
 V: verb
 P: preposition
 NP: noun phrase
 VP: verb phrase
 PP: prepositional phrase

Context Free Grammar
S -> NP VP
NP -> D N
VP -> V NP
VP -> V NP PP
PP -> P NP
D -> [the]
D -> [a]
N -> [dog]
N -> [cat]
N -> [garden]
V -> [chased]
V -> [saw]
P -> [into]

Terminals ~ Lexicon

Phrase structure

 Formalism of context-free grammars
• Nonterminal symbols: S, NP, VP, ...
• Terminal symbols: dog, cat, saw, the, ...

 Recursion
• „The girl thought the dog chased the cat“

VP -> V, S
N -> [girl]
V -> [thought]

Top-down parsing

 S -> NP VP
 S -> Det N VP
 S -> The N VP
 S -> The dog VP
 S -> The dog V NP
 S -> The dog chased NP
 S -> The dog chased Det N
 S-> The dog chased the N
 S-> The dog chased the cat

Context-free grammar
SS --> --> NPNP,,VPVP..
NPNP --> --> PNPN. . %Proper noun%Proper noun
NPNP --> Art, --> Art, AdjAdj, N., N.
NPNP --> Art,N.--> Art,N.
VPVP --> VI. --> VI. %intransitive verb%intransitive verb
VPVP --> VT, --> VT, NPNP. . %transitive verb%transitive verb
ArtArt --> [the].--> [the].
AdjAdj --> [lazy].--> [lazy].
AdjAdj --> [rapid].--> [rapid].
PNPN --> [--> [achillesachilles].].
NN --> [turtle].--> [turtle].
VIVI --> [sleeps].--> [sleeps].
VTVT --> [beats].--> [beats].

Parse tree

 SS

 NPNP VPVP

 ArtArt Adj Adj NN Vt Vt NPNP

 PN PN

achillesachillesbeatsbeatsturtleturtlerapidrapidthethe

Definite Clause Grammars
Non-terminals may have arguments

SS --> --> NPNP((NN),),VPVP((NN).).

NP(NP(NN)) --> Art(--> Art(NN),N(),N(NN).).

VP(VP(NN)) --> VI(--> VI(NN).).

Art(Art(singularsingular)) --> [a].--> [a].

Art(Art(singularsingular)) --> [the].--> [the].

Art(Art(pluralplural)) --> [the].--> [the].

N(N(singularsingular)) --> [turtle].--> [turtle].

N(N(pluralplural)) --> [turtles].--> [turtles].

VI(VI(singularsingular)) --> [sleeps].--> [sleeps].

VI(VI(pluralplural)) --> [sleep].--> [sleep].

Number Agreement

DCGs

 Non-terminals may have arguments
• Variables (start with capital)

 E.g. Number, Any
• Constants (start with lower case)

 E.g. singular, plural
• Structured terms (start with lower case, and take

arguments themselves)
 E.g. vp(V,NP)

 Parsing needs to be adapted
• Using unification

Unification in a nutshell
(cf. AI course)

 Substitutions

 E.g. {Num / singular }
 {T / vp(V,NP)}

 Applying substitution
• Simultaneously replace variables by

corresponding terms
• S(Num) {Num / singular } = S(singular)

Unification

 Take two non-terminals with arguments and
compute (most general) substitution that
makes them identical, e.g.,
• Art(singular) and Art(Num)

 Gives { Num / singular }
• Art(singular) and Art(plural)

 Fails
• Art(Num1) and Art(Num2)

 {Num1 / Num2}
• PN(Num, accusative) and PN(singular, Case)

 {Num/singular, Case/accusative}

Parsing with DCGs

 Now require successful unification at each
step

 S -> NP(N), VP(N)
 S -> Art(N), N(N), VP(N) {N/singular}
 S -> a N(singular), VP(singular)
 S -> a turtle VP(singular)
 S -> a turtle sleeps

 S-> a turtle sleep fails

Case Marking
PNPN(singular,nominative)(singular,nominative) --> --> [he];[she][he];[she]

PNPN(singular,accusative)(singular,accusative) --> --> [him];[her][him];[her]

PNPN(plural,nominative)(plural,nominative) --> --> [they][they]

PNPN(plural,accusative)(plural,accusative) --> --> [them][them]

S S --> NP(Number,nominative), NP(Number)--> NP(Number,nominative), NP(Number)

VP(Number) --> V(Number), VP(Any,accusative)VP(Number) --> V(Number), VP(Any,accusative)

VP(Number,Case) --> VP(Number,Case) --> PNPN(Number,Case)(Number,Case)

VP(Number,Any) --> VP(Number,Any) --> DetDet, N(Number), N(Number)

He sees her. She sees him. They see her.

But not Them see he.

DCGs

 Are strictly more expressive than CFGs
 Can represent for instance

• S(N) -> A(N), B(N), C(N)
• A(0) -> []
• B(0) -> []
• C(0) -> []
• A(s(N)) -> A(N), [A]
• B(s(N)) -> B(N), [B]
• C(s(N)) -> C(N), [C]

Probabilistic Models

 Traditional grammar models are very rigid,
• essentially a yes / no decision

 Probabilistic grammars
• Define a probability models for the data
• Compute the probability of each alternative
• Choose the most likely alternative

 Ilustrate on
• Shannon Game
• Spelling correction
• Parsing

Sequences are omni-present

 Therefore the techniques we will see
also apply to
• Bioinformatics

 DNA, proteins, mRNA, … can all be
represented as strings

• Robotics
 Sequences of actions, states, …

• …

Rest of the Course

 Limitations traditional grammar models motivate
probabilistic extensions
• Regular grammars and Finite State Automata

 All use principles of Part I on Graphical Models
 Markov Models using n-gramms
 (Hidden) Markov Models
 Conditional Random Fields

• As an example of using undirected graphical models
• Probabilistic Context Free Grammars
• Probabilistic Definite Clause Grammars

