

Advanced AI Techniques

I. Bayesian Networks / 4. Constrained-based Structure Learning (1/2)

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Institute of Computer Science University of Freiburg http://www.informatik.uni-freiburg.de/

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques

1/29

1. Checking Probabilistic Independencies

2. Markov Equivalence and DAG patterns

3. PC Algorithm

Types of Methods for Structure Learning

There are three types of structure learning algorithms for Bayesian networks:

- 1. constrained-based learning (e.g., PC),
- 2. searching with a target function (e.g., K2),
- 3. hybrid methods (e.g., sparse candidate).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Fr Course on Advanced AI Techniques, winter term 2005	eiburg, Germany, 1/29
Advanced AI Techniques / 3. PC Algorithm	
Computing the Skeleton	ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG

Lemma 1 (Edge Criterion). Let G := (V, E) be a DAG and $X, Y \in V$. Then it is equivalent:

(i) X and Y cannot be separated by any \mathcal{Z} , i.e.,

 $\neg I_G(X,Y \,|\, \mathcal{Z}) \quad \forall \mathcal{Z} \subseteq V \setminus \{X,Y\}$

(ii) There is an edge between X and Y, i.e.,

 $(X,Y)\in E \text{ or } (Y,X)\in E$

Definition 1. Any $\mathcal{Z} \subseteq V \setminus \{X, Y\}$ with $I_G(X, Y | \mathcal{Z})$ is called a **separator of** *X* and *Y*.

```
\operatorname{Sep}(X,Y) := \{ \mathcal{Z} \subseteq V \setminus \{X,Y\} \mid I_G(X,Y \mid \mathcal{Z}) \}
```

Computing the Skeleton / Separators

i separators-basic (set of variables V, independency relation I) : 2 Allocate $S : \mathcal{P}^2(V) \to \mathcal{P}(V) \cup \{\text{none}\}$ \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} $S({X,Y}) :=$ none 4 $\underline{\mathbf{for}} \ T \subseteq V \setminus \{X, Y\} \ \underline{\mathbf{do}}$ 5 if $I(X, Y \mid T)$ 6 $S({X,Y}) := T$ 7 break 8 fi 9 od 10 11 **od** 12 return SFigure 1: Compute a separator for each pair of variables.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques / 3. PC Algorithm

- ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

3/29

Example / 1/3 – Computing the Skeleton

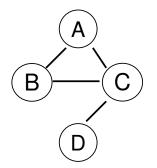
Let *I* be the following independency structure:

 $I(A, D | C), \quad I(A, D | \{C, B\}), \quad I(B, D)$

Then we can compute the following separators:

$$\begin{split} S(A,B) &:= \mathsf{none} \\ S(A,C) &:= \mathsf{none} \\ S(A,D) &:= \{C\} \\ S(B,C) &:= \mathsf{none} \\ S(B,D) &:= \emptyset \\ S(C,D) &:= \mathsf{none} \end{split}$$

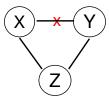
Thus, the skeleton of the Bayesian Network representing *I* looks like



Computing the V-structure

Lemma 2 (Uncoupled Head-to-head Meeting Criterion). Let

G := (V, E) be a DAG, $X, Y, Z \in V$ with



Then it is equivalent:

(i) $X \rightarrow Z \leftarrow Y$ is an uncoupled head-to-head meeting, i.e.,

 $(X,Z),(Y,Z)\in E,(X,Y),(Y,X)\not\in E$

(ii) Z is not contained in any separator of X and Y, i.e.,

 $Z\not\in S \quad \forall S\in \operatorname{Sep}(X,Y)$

(iii) Z is not contained in at least one separator of X and Y, i.e.,

 $Z \not\in S \quad \exists S \in \operatorname{Sep}(X, Y)$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques / 3. PC Algorithm

5/29

Computing Skeleton and V-structure

1 vstructure(set of variables V, independency relation I):
2 S := separators(V, I)
3 G := (V, E) with E := {{X, Y} | S({X, Y}) = none}
4 for X, Y, Z ∈ V with X - Z - Y, X - Y do
5 if Z ∉ S(X, Y)
6 orient X - Z - Y as X → Z ← Y
7 fi
8 od
9 return G

Figure 2: Compute skeleton and v-structure.

I learn-structure-pc(set of variables V, independency relation I) :

- ² G := vstructure(V, I)
- 3 saturate(G)
- 4 <u>return</u> G

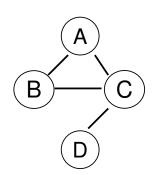
Figure 3: Learn structure of a Bayesian Network (SGS/PC algorithm, [SGS00]).

Example / 2/3 – Computing the V-Structure

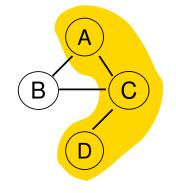
Separators:

$$\begin{split} S(A,B) &:= \mathsf{none}\\ S(A,C) &:= \mathsf{none}\\ S(A,D) &:= \{C\}\\ S(B,C) &:= \mathsf{none}\\ S(B,D) &:= \emptyset\\ S(C,D) &:= \mathsf{none} \end{split}$$

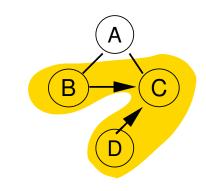
Skeleton:



Checking A-C-D:



Checking B-C-D:



Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

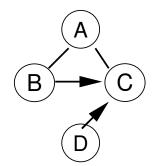
Advanced AI Techniques / 3. PC Algorithm

Example / 3/3 – Saturating

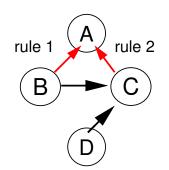
ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

7/29

Skeleton and v-structure:



Saturating:



Number of Independency Tests

Let there be n variables.

For each of the $\binom{n}{2}$ pairs of variables, there are 2^{n-2} candidates for possible separators.

number of *I*-tests =
$$\binom{n}{2} 2^{n-2}$$

Example: n = 4:

$$\binom{n}{2}2^{n-2} = \binom{4}{2}2^2 = 6 \cdot 4 = 24$$

If we start with small separators and stop once a separator has been found, we still have to check

 $4 \cdot (1+2+1) + 1 \cdot (1+2) + 1 \cdot 1 = 20$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques / 3. PC Algorithm

Number of Independency Tests

Can we reduce the number of tests for a given pair of variable by reusing results for other pairs of variables?

Lemma 3. Let G := (V, E) be a DAG and $X, Y \in V$ separated. Then

 $I(X, Y \mid pa(X))$ or $I(X, Y \mid pa(Y))$

As we do not know directions of edges at the the skeleton recovery step, we use the weaker result:

```
I(X, Y \mid fan(X)) or I(X, Y \mid fan(Y))
```

9/29

ALBERT-LUDWIGS-

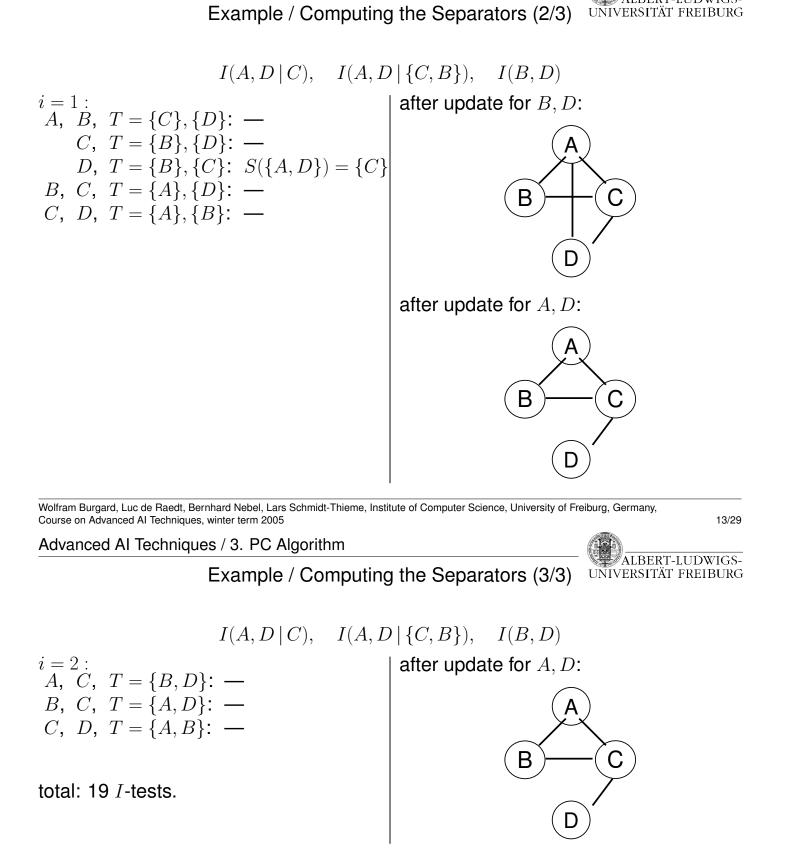
UNIVERSITÄT FREIBURG

Computing the Skeleton / Separators

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

i separators-remove-edges(separator map S, skeleton graph G, independency relation I) $_{2} i := 0$ while $\exists X \in V : | \operatorname{fan}_G(X) | > i \operatorname{do}$ 3 for $\{X, Y\} \in E$ with $\operatorname{fan}_G(X) | > i$ or $\operatorname{fan}_G(Y) | > i$ do 4 <u>for</u> $T \in \mathcal{P}^i(\operatorname{fan}_G(X) \setminus \{Y\}) \cup \mathcal{P}^i(\operatorname{fan}_G(Y) \setminus \{X\})$ <u>do</u> 5 if $I(X, Y \mid T)$ 6 $S(\{X,Y\}) := T$ 7 $E := E \setminus \{\{X, Y\}\}$ 8 9 break fi 10 od 11 od 12 i := i + 113 14 **od** 15 return S *i* separators-interlaced (set of variables V, independency relation I) : 2 Allocate $S: \mathcal{P}^2(V) \to \mathcal{P}(V) \cup \{\text{none}\}$ $\beta S(\{X,Y\}) := \text{none} \quad \forall \{X,Y\} \subseteq V$ 4 G := (V, E) with $E := \mathcal{P}^2(V)$ 5 separators-remove-edges(S, G, I)6 return S Figure 4: Compute a separator for each pair of variables. Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005 11/29 Advanced AI Techniques / 3. PC Algorithm ALBERT-LUDWIGS-Example / Computing the Separators (1/3) UNIVERSITÄT FREIBURG $I(A, D | C), \quad I(A, D | \{C, B\}), \quad I(B, D)$ initial graph: i = 0: A, B, $T = \emptyset$: — C. $T = \emptyset$: — $D, T = \emptyset$: — B, C, $T = \emptyset$: — В С $D, T = \emptyset: D(\{B, D\}) = \emptyset$ C. D. $T = \emptyset$: after update for B, D: В C

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG



Algorithms – SGS vs. PC

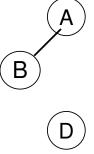
SGS/PC with separators-basic is called SGS algorithm ([SGS00], 1990).

SGS/PC with separators-interlaced is called PC algorithm ([SGS00], 1991).

Implementations are available:

- in Tetrad
 http://www.phil.cmu.edu/projects/tetrad/
 (class files & javadocs, no sources)
- in Hugin (commercial).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Course on Advanced AI Techniques, winter term 2005	Freiburg, Germany, 15/29
Advanced AI Techniques / 3. PC Algorithm	
Another Example	ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG
Let I be the following independency structure:	
I(A,D B), I(B,D)	
PC computes the following DAG pattern:	
(\mathbf{A})	



But this is not even a representation of I, as it implies

 $I_G(A, D \mid \emptyset)$

Representation and Faithfulness Tests

PC computes the DAG pattern of an independency relation

if there exists one at all !

Remember: not any independency relation has a faithful DAG representation.

But how do we know if an independency relation has a faithful DAG representation?

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,	
Course on Advanced AI Techniques, winter term 2005	17/29

Advanced AI Techniques / 3. PC Algorithm

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Representation and Faithfulness Tests

There is no easy way to decide if a given independency relation has a faithful DAG representation.

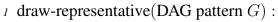
So just check ex-post if the DAG pattern we have found is a faithful representation.

Check:

- 1. compute all $I_G(X, Y | Z)$ and check if I(X, Y | Z) (representation),
- 2. check for each I(X, Y | Z) if $I_G(X, Y | Z)$ (faithfulness).

As there is no easy way to enumerate $I_G(X, Y | \mathcal{Z})$ for a DAG pattern *G* directly, we draw a representative *H* and then enumerate $I_H(X, Y | \mathcal{Z})$ (remember that $I_H = I_G$).

Draw a Representative of a DAG pattern

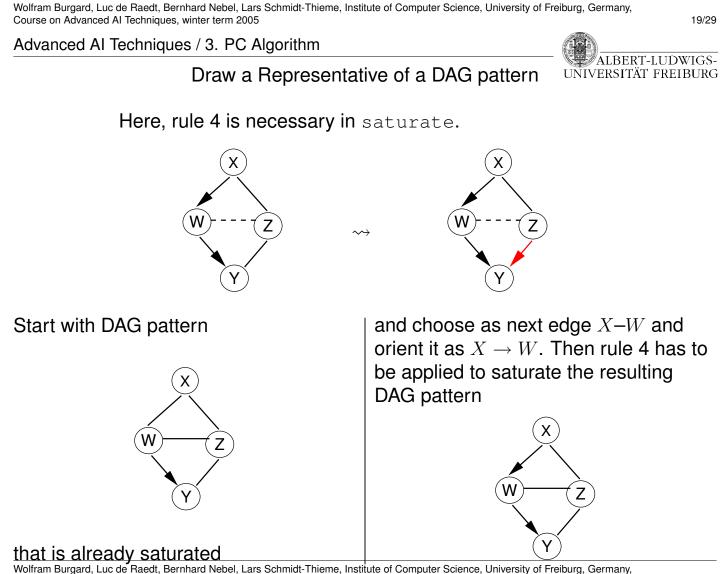


- 2 saturate(G)
- 3 while G has unoriented edges do
- draw an edge from G an orient it arbitrarily
- s saturate(G)
- 6 <u>od</u>

Course on Advanced AI Techniques, winter term 2005

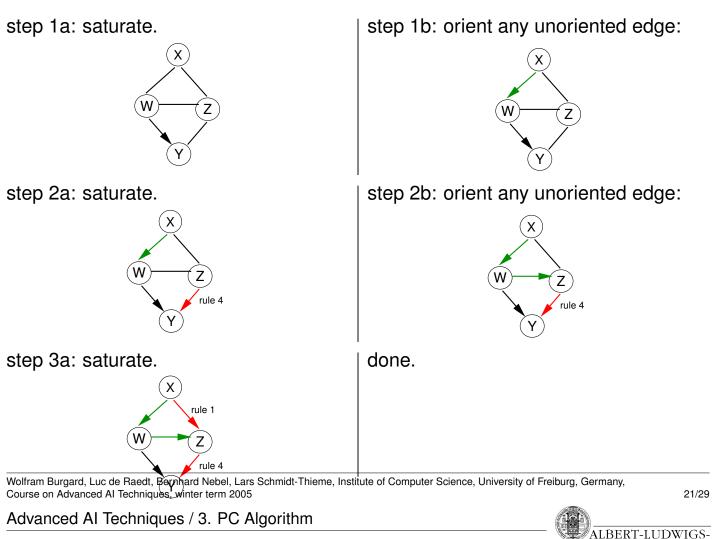
7 **return** G

Figure 5: Draw a representative of a DAG pattern.



UNIVERSITÄT FREIBURG

Draw a Representative of a DAG pattern / Example VERSITÄT FREIBURG



Representation and Faithfulness Tests

If $I = I_p$ the probabilistic independency relation of a JPD p, then for (1) it suffices to check the Markov property, i.e.,

for all X check if $I_p(X, \operatorname{nondesc}(X) \setminus \operatorname{pa}(X) | \operatorname{pa}(X))$

It even suffices to check for any topological ordering $\sigma = (X_1, \ldots, X_n)$ if

$$I_p(\sigma(i), \sigma(\{1, \ldots, i-1\}) \setminus pa(\sigma(i)) \mid pa(\sigma(i)))$$

A Third Method to Compute Separators

separators-interlaced computes separators
top-down by

- starting with a complete graph and then
- successively thining the graph.

Therefore, we have to start checking with lots of candidates for possible separators.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,

Course on Advanced AI Techniques, winter term 2005	23/29
Advanced AI Techniques / 3. PC Algorithm	
A Third Method to Compute Separators	ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG
1 separators-add-edges(separator map S, skeleton graph G, independency relate 2 S({X,Y}) := argmin_{T \subseteq fan_G(X), T \subseteq fan_G(Y)} g(X,Y,T) \forall {X,Y} \in \mathcal{P}^2(V) 3 {X ₀ , Y ₀ } := argmax _{{X,Y} \in \mathcal{P}^2(V) g(X,Y,S({X,Y}))}	ion <i>I</i>) :

- $4 \text{ while } \neg I(X_0, Y_0 \mid S(\{X_0, Y_0\})) \text{ do}$
- $5 \qquad E := E \cup \{\{X_0, Y_0\}\}$
- 6 $S({X_0, Y_0}) :=$ none
- 7 $S(\{X,Y\}) := \operatorname{argmin}_{T \subseteq \operatorname{fan}_G(X), T \subseteq \operatorname{fan}_G(Y)} g(X,Y,T) \quad \forall \{X,Y\} \in \mathcal{P}^2(V) \setminus E, X \in \{X_0,Y_0\}$

$$s \qquad \{X_0, Y_0\} := \operatorname{argmax}_{\{X,Y\} \in \mathcal{P}^2(V) \setminus E} g(X, Y, S(\{X, Y\}))$$

9 <u>od</u>

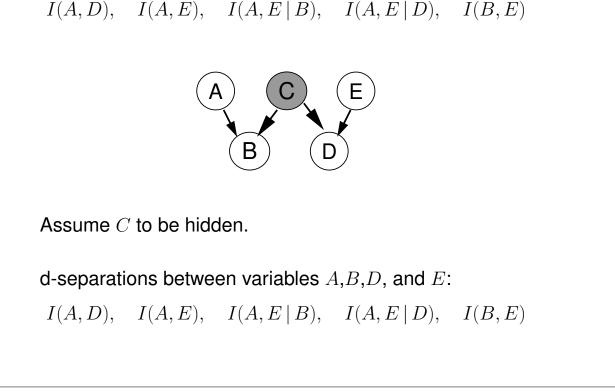
```
10 return S
```

- i separators-bottumup(set of variables V, independency relation I) :
- 2 Allocate $S : \mathcal{P}^2(V) \to \mathcal{P}(V) \cup \{\text{none}\}$
- G := (V, E) with $E := \emptyset$
- 4 separators-add-edges(S, G, I)
- 5 separators-remove-edges(S, G, I)
- 6 <u>return</u> S

Figure 6: Compute a separator for each pair of variables [TASB03].

Embedded Faithfulness

Let *I* be the following independency structure:



 Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
Course on Advanced AI Techniques, winter term 2005
 25/29

 Advanced AI Techniques / 3. PC Algorithm
 ALBERT-LUDWIGS-
UNIVERSITÄT FREIBURG

Definition 2. Let *I* be an independency relation on the variables *V* and *G* be a DAG with vertices $W \supseteq V$.

I is embedded in G, if all independency statements entailed by G between variables from V hold in I:

$$I_G(\mathcal{X}, \mathcal{Y} \,|\, \mathcal{Z}) \Rightarrow I(\mathcal{X}, \mathcal{Y} \,|\, \mathcal{Z}) \quad orall \mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq V$$

I is embedded faithfully in *G*, if the independency statements entailed by *G* are exactly *I*:

$$I_G(\mathcal{X}, \mathcal{Y} \,|\, \mathcal{Z}) \Leftrightarrow I(\mathcal{X}, \mathcal{Y} \,|\, \mathcal{Z}) \quad \forall \mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq V$$

Many independency relations w./o. faithful DAG representation can be embedded faithfully.

But not every independency relation can be embedded faithfully.

Embedded Faithfulness / Example

Let *I* be the independency relation [Nea03, ex. 2.13, p. 103]

 $I(X,Y), \quad I(X,Y \,|\, Z)$

Assume, I can be embedded faithfully in a DAG G.

- As $\neg I(X, Z)$, there must be chain $X \sim Z$ w./o. head-to-head meetings.
- As $\neg I(Z, Y)$, there must be chain $Y \sim Z$ w./o. head-to-head meetings.

Now, concatenate both chains $X \sim Z \sim Y$:

- eihter $X \sim \to Z \leftarrow \sim Y$, and then the chain is not blocked by Z, i.e., not I(X, Y | Z),
- or not $X \sim \to Z \leftarrow \sim Y$, and then the chain is not blocked by \emptyset , i.e., not I(X, Y).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques / 3. PC Algorithm

There are variants of the PC algorithm for finding faithful embeddings of a given independency relation:

- Causal Inference (CI) and
- Fast Causal Inference Algorithms (FCI; [SGS00])

See also [Nea03, ch. 10.2].

ALBERT-LUDWIGS-

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

27/29

References

- [Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
- [SGS00] Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search.* MIT Press, 2 edition, 2000.
- [TASB03] I. Tsamardinos, C. F. Aliferis, A. Statnikov, and L. E. Brown. Scaling-up bayesian network learning to thousands of variables using local learning technique. Technical report, DSL TR-03-02, March 12, 2003, Vanderbilt University, Nashville, TN, USA, 2003.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

29/29