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 Types of Methods for Structure Learning

There are three types of structure learning algorithms for
Bayesian networks:

1. constrained-based learning (e.g., PC),

2. searching with a target function (e.g., K2),

3. hybrid methods (e.g., sparse candidate).
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 Computing the Skeleton

Lemma 1 (Edge Criterion). Let G := (V, E) be a DAG
and X,Y ∈ V . Then it is equivalent:

(i) X and Y cannot be separated by any Z, i.e.,

¬IG(X,Y | Z) ∀Z ⊆ V \ {X, Y }

(ii) There is an edge between X and Y , i.e.,

(X,Y ) ∈ E or (Y, X) ∈ E

Definition 1. Any Z ⊆ V \ {X,Y } with IG(X, Y | Z) is
called a separator of X and Y .

Sep(X,Y ) := {Z ⊆ V \ {X,Y } | IG(X,Y | Z)}
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 Computing the Skeleton / Separators

1 separators-basic(set of variables V, independency relation I) :
2 Allocate S : P2(V )→ P(V ) ∪ {none}
3 for {X, Y } ⊆ V do
4 S({X, Y }) := none
5 for T ⊆ V \ {X, Y } do
6 if I(X, Y |T )
7 S({X, Y }) := T

8 break
9 fi

10 od
11 od
12 return S

Figure 1: Compute a separator for each pair of variables.
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 Example / 1/3 – Computing the Skeleton

Let I be the following independency structure:

I(A, D |C), I(A, D | {C, B}), I(B, D)

Then we can compute the following
separators:

S(A, B) := none
S(A, C) := none
S(A, D) := {C}
S(B, C) := none
S(B, D) := ∅
S(C, D) := none

Thus, the skeleton of the Bayesian
Network representing I looks like

D

B

A

C
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 Computing the V-structure

Lemma 2 (Uncoupled Head-to-head Meeting Criterion). Let
G := (V, E) be a DAG, X,Y, Z ∈ V with

x

Z

YX

Then it is equivalent:

(i) X → Z ← Y is an uncoupled head-to-head meeting, i.e.,

(X,Z), (Y, Z) ∈ E, (X, Y ), (Y,X) 6∈ E

(ii) Z is not contained in any separator of X and Y , i.e.,

Z 6∈ S ∀S ∈ Sep(X,Y )

(iii) Z is not contained in at least one separator of X and Y , i.e.,

Z 6∈ S ∃S ∈ Sep(X,Y )
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 Computing Skeleton and V-structure

1 vstructure(set of variables V, independency relation I) :
2 S := separators(V, I)
3 G := (V, E) with E := {{X, Y } |S({X, Y }) = none}
4 for X, Y, Z ∈ V with X − Z − Y, X−6 −Y do
5 if Z 6∈ S(X, Y )
6 orient X − Z − Y as X → Z ← Y

7 fi
8 od
9 return G

Figure 2: Compute skeleton and v-structure.

1 learn-structure-pc(set of variables V, independency relation I) :
2 G := vstructure(V, I)
3 saturate(G)
4 return G

Figure 3: Learn structure of a Bayesian Network (SGS/PC algorithm,
[SGS00]).
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 Example / 2/3 – Computing the V-Structure

Separators:
S(A, B) := none
S(A, C) := none
S(A, D) := {C}
S(B, C) := none
S(B, D) := ∅
S(C, D) := none

Skeleton:

D

B

A

C

Checking A–C–D:

D

B

A

C

Checking B–C–D:

D

B

A

C
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 Example / 3/3 – Saturating

Skeleton and v-structure:

C

A

B

D

Saturating:

rule 1 rule 2

C

A

B

D
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 Number of Independency Tests

Let there be n variables.
For each of the

(
n
2

)
pairs of variables, there are 2n−2

candidates for possible separators.

number of I-tests =

(
n

2

)
2n−2

Example: n = 4:(
n

2

)
2n−2 =

(
4

2

)
22 = 6 · 4 = 24

If we start with small separators and stop once a
separator has been found, we still have to check

4 · (1 + 2 + 1) + 1 · (1 + 2) + 1 · 1 = 20
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 Number of Independency Tests

Can we reduce the number of tests for a given pair of
variable by reusing results for other pairs of variables?

Lemma 3. Let G := (V, E) be a DAG and X,Y ∈ V
separated. Then

I(X,Y | pa(X)) or I(X,Y | pa(Y ))

As we do not know directions of edges at the the
skeleton recovery step, we use the weaker result:

I(X,Y | fan(X)) or I(X,Y | fan(Y ))
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 Computing the Skeleton / Separators
1 separators-remove-edges(separator map S, skeleton graph G, independency relation I) :
2 i := 0
3 while ∃X ∈ V : | fanG(X)| > i do
4 for {X, Y } ∈ E with fanG(X)| > i or fanG(Y )| > i do
5 for T ∈ P i(fanG(X) \ {Y }) ∪ P i(fanG(Y ) \ {X}) do
6 if I(X, Y |T )
7 S({X, Y }) := T

8 E := E \ {{X, Y }}
9 break

10 fi
11 od
12 od
13 i := i + 1
14 od
15 return S

1 separators-interlaced(set of variables V, independency relation I) :
2 Allocate S : P2(V )→ P(V ) ∪ {none}
3 S({X, Y }) := none ∀{X, Y } ⊆ V

4 G := (V, E) with E := P2(V )
5 separators-remove-edges(S, G, I)
6 return S

Figure 4: Compute a separator for each pair of variables.
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 Example / Computing the Separators (1/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 0 :
A, B, T = ∅: —

C, T = ∅: —
D, T = ∅: —

B, C, T = ∅: —
D, T = ∅: D({B, D}) = ∅

C, D, T = ∅: —

initial graph:

D

B

A

C

after update for B, D:

D

B

A

C
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 Example / Computing the Separators (2/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 1 :
A, B, T = {C}, {D}: —

C, T = {B}, {D}: —
D, T = {B}, {C}: S({A, D}) = {C}

B, C, T = {A}, {D}: —
C, D, T = {A}, {B}: —

after update for B, D:

D

B

A

C

after update for A, D:

C

A

B

D
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 Example / Computing the Separators (3/3)

I(A, D |C), I(A, D | {C, B}), I(B, D)

i = 2 :
A, C, T = {B, D}: —
B, C, T = {A, D}: —
C, D, T = {A, B}: —

total: 19 I-tests.

after update for A, D:

C

A

B

D
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 Algorithms – SGS vs. PC

SGS/PC with separators-basic is called SGS
algorithm ([SGS00], 1990).

SGS/PC with separators-interlaced is called PC
algorithm ([SGS00], 1991).

Implementations are available:

• in Tetrad
http://www.phil.cmu.edu/projects/tetrad/
(class files & javadocs, no sources)

• in Hugin (commercial).
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 Another Example

Let I be the following independency structure:

I(A, D |B), I(B, D)

PC computes the following DAG pattern:

A

B

D

But this is not even a representation of I, as it implies

IG(A, D | ∅)
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 Representation and Faithfulness Tests

PC computes the DAG pattern of an independency
relation

if there exists one at all !

Remember: not any independency relation has a faithful
DAG representation.

But how do we know if an independency relation has a
faithful DAG representation?
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 Representation and Faithfulness Tests

There is no easy way to decide if a given independency
relation has a faithful DAG representation.

So just check ex-post if the DAG pattern we have found
is a faithful representation.

Check:

1. compute all IG(X,Y | Z) and check if I(X,Y | Z)
(representation),

2. check for each I(X,Y | Z) if IG(X,Y | Z) (faithfulness).

As there is no easy way to enumerate IG(X,Y | Z) for a
DAG pattern G directly, we draw a representative H and
then enumerate IH(X,Y | Z) (remember that IH = IG).
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 Draw a Representative of a DAG pattern

1 draw-representative(DAG pattern G) :
2 saturate(G)
3 while G has unoriented edges do
4 draw an edge from G an orient it arbitrarily
5 saturate(G)
6 od
7 return G

Figure 5: Draw a representative of a DAG pattern.
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 Draw a Representative of a DAG pattern

Here, rule 4 is necessary in saturate.

W

Y

Z

X

 W

Y

Z

X

Start with DAG pattern

X

Z

Y

W

that is already saturated

and choose as next edge X–W and
orient it as X → W . Then rule 4 has to
be applied to saturate the resulting
DAG pattern

X

Z

Y

W
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 Draw a Representative of a DAG pattern / Example

step 1a: saturate.
X

Z

Y

W

step 1b: orient any unoriented edge:

W

Y

Z

X

step 2a: saturate.

rule 4

W

Y

Z

X

step 2b: orient any unoriented edge:

rule 4

X

Z

Y

W

step 3a: saturate.

rule 1

rule 4

X

Z

Y

W

done.
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 Representation and Faithfulness Tests

If I = Ip the probabilistic independency relation of a JPD
p, then for (1) it suffices to check the Markov property,
i.e.,

for all X check if Ip(X, nondesc(X) \ pa(X) | pa(X))

It even suffices to check for any topological ordering
σ = (X1, . . . , Xn) if

Ip(σ(i), σ({1, . . . , i− 1}) \ pa(σ(i)) | pa(σ(i)))
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 A Third Method to Compute Separators

separators-interlaced computes separators
top-down by

• starting with a complete graph and then

• successively thining the graph.

Therefore, we have to start checking with lots of
candidates for possible separators.
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 A Third Method to Compute Separators

1 separators-add-edges(separator map S, skeleton graph G, independency relation I) :
2 S({X, Y }) := argminT⊆fanG(X),T⊆fanG(Y ) g(X, Y, T ) ∀{X, Y } ∈ P2(V )

3 {X0, Y0} := argmax{X,Y }∈P2(V ) g(X, Y, S({X, Y }))
4 while ¬I(X0, Y0 |S({X0, Y0})) do
5 E := E ∪ {{X0, Y0}}
6 S({X0, Y0}) := none
7 S({X, Y }) := argminT⊆fanG(X),T⊆fanG(Y ) g(X, Y, T ) ∀{X, Y } ∈ P2(V ) \ E, X ∈ {X0, Y0}

8 {X0, Y0} := argmax{X,Y }∈P2(V )\E g(X, Y, S({X, Y }))
9 od

10 return S

1 separators-bottumup(set of variables V, independency relation I) :
2 Allocate S : P2(V )→ P(V ) ∪ {none}
3 G := (V, E) with E := ∅
4 separators-add-edges(S, G, I)
5 separators-remove-edges(S, G, I)
6 return S

Figure 6: Compute a separator for each pair of variables [TASB03].
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 Embedded Faithfulness

Let I be the following independency structure:

I(A, D), I(A, E), I(A, E |B), I(A, E |D), I(B, E)

EA C

B D

Assume C to be hidden.

d-separations between variables A,B,D, and E:

I(A, D), I(A, E), I(A, E |B), I(A, E |D), I(B, E)
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 Embedded Faithfulness

Definition 2. Let I be an independency relation on the
variables V and G be a DAG with vertices W ⊇ V .
I is embedded in G, if all independency statements
entailed by G between variables from V hold in I:

IG(X ,Y |Z)⇒ I(X ,Y |Z) ∀X ,Y ,Z ⊆ V

I is embedded faithfully in G, if the independency
statements entailed by G are exactly I:

IG(X ,Y |Z)⇔ I(X ,Y |Z) ∀X ,Y ,Z ⊆ V

Many independency relations w./o. faithful DAG
representation can be embedded faithfully.

But not every independency relation can be embedded
faithfully.
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 Embedded Faithfulness / Example

Let I be the independency relation [Nea03, ex. 2.13,
p. 103]

I(X,Y ), I(X,Y |Z)

Z

X YAssume, I can be embedded faithfully in a DAG G.

• As ¬I(X,Z), there must be chain X ∼ Z w./o.
head-to-head meetings.

• As ¬I(Z, Y ), there must be chain Y ∼ Z w./o.
head-to-head meetings.

Now, concatenate both chains X ∼ Z ∼ Y :

• eihter X ∼→ Z ←∼ Y , and then the chain is not
blocked by Z, i.e., not I(X,Y |Z),

• or not X ∼→ Z ←∼ Y , and then the chain is not
blocked by ∅, i.e., not I(X, Y ).
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There are variants of the PC algorithm for finding faithful
embeddings of a given independency relation:

• Causal Inference (CI) and

• Fast Causal Inference Algorithms (FCI; [SGS00])

See also [Nea03, ch. 10.2].
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