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Advanced AI Techniques / 1. Checking Probalistic Independencies

 The Very Last Step

• Assume, we know the whole structure of a bn except
a single edge.

• This edge represents a single independence
statement.

• Check it and include edge based on outcome of that
test.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Exact Check / Example (1/3)

If X and Y are independent, then

p(X,Y ) = p(X) · p(Y )

observed

Y = 0 1

X = 0 3 6
1 1 2

observed relative frequencies p(X,Y ):

Y = 0 1

X = 0 0.25 0.5
1 0.083 0.167

expected relative frequencies
p(X) p(Y ):

Y = 0 1

X = 0 0.25 0.5
1 0.083 0.167

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
Course on Advanced AI Techniques, winter term 2005 2/42



Advanced AI Techniques / 1. Checking Probalistic Independencies

 Exact Check / Example (2/3)

If X and Y are independent, then

p(X,Y ) = p(X) · p(Y )

observed

Y = 0 1

X = 0 3000 6000
1 1000 2000

observed relative frequencies p(X,Y ):

Y = 0 1

X = 0 0.25 0.5
1 0.083 0.167

expected relative frequencies
p(X) p(Y ):

Y = 0 1

X = 0 0.25 0.5
1 0.083 0.167
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Exact Check / Example (3/3)

If X and Y are independent, then

p(X,Y ) = p(X) · p(Y )

observed

Y = 0 1

X = 0 2999 6001
1 1000 2000

observed relative frequencies p(X,Y ):

Y = 0 1

X = 0 0.2499167 0.5000833
1 0.0833333 0.1666667

expected relative frequencies
p(X) p(Y ):

Y = 0 1

X = 0 0.2499375 0.5000625
1 0.0833125 0.1666875
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Gamma function (repetition, see I.2)

Definition 1. Gamma function

Γ(a) :=

∞∫
0

ta−1e−tdt

converging for a > 0.

Lemma 1 (Γ is generalization of
factorial).

(i) Γ(n) = (n− 1)! for n ∈ N.

(ii) Γ(a+1)
Γ(a) = a.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Incomplete Gamma Function

Definition 2. Incomplete Gamma function

γ(a, x) :=

x∫
0

ta−1e−tdt

defined for a > 0 and x ∈ [0,∞].

Lemma 2.
γ(a,∞) = Γ(a)
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 χ2 distribution

Definition 3. chi-square distribution (χ2) has density

p(x) :=
1

2
df
2 Γ(df

2 )
x

df
2 −1 e−

x
2 ;

defined on ]0,∞[.
Its cumulative distribution function (cdf) is:

p(X < x) :=
γ(df

2 , x
2)

Γ(df
2 )

;
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 χ2 distribution

Lemma 3.
E(χ2(x, df)) = df

A Java implementation of the incomplete gamma function
(and thus of χ2 distribution) can be found, e.g., in COLT
(http://dsd.lbl.gov/˜hoschek/colt/), package
cern.jet.stat, class Gamma.

Be careful, sometimes

γ̃(a, x) :=
1

Γ(a)

x∫
0

ta−1e−tdt =
1

Γ(a)
γ(a, x) (e.g., R)

or

γ̃(a, x) :=

∞∫
x

ta−1e−tdt = Γ(a)− γ(a, x) (e.g., Maple)

are referenced as incomplete gamma function.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Count Variables / Just 2 Variables

Let X,Y be random variables, D ⊆ dom(X)× dom(Y )
and for two values x ∈ dom(X), y ∈ dom(Y )

cX=x :=|{d ∈ D | d|X = x}|
cY =y :=|{d ∈ D | d|X = x}|

cX=x,Y =y :=|{d ∈ D | d|X = x, d|Y = y}|

their counts.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 χ2 and G2 statistics / Just 2 Variables

If X,Y are independent, then

p(X,Y ) = p(X) p(Y )

and thus

E(cX=x,Y =y | cX=x, cY =y) =
cX=x · cY =y

|D|

Then the statistics

χ2 :=
∑

x∈dom(X)

∑
y∈dom(Y )

(cX=x,Y =y −
cX=x·cY =y

|D| )2

cX=x·cY =y

|D|

as well as

G2 := 2
∑

x∈dom(X)

∑
y∈dom(Y )

cX=x,Y =y · ln

 cX=x,Y =y(
cX=x·cY =y

|D|

)


are asymptotically χ2-distributed with
df = (| dom(X)| − 1) (| dom(Y )| − 1) degrees of freedom.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Testing Independency / informal

Generally, the statistics have the form

χ2 =
∑ (observed− expected)2

expected

G2 =
∑

observed ln

(
observed
expected

)

χ2 = 0 and G2 = 0 for exact independent variables.

The larger χ2 and G2, the more likely / stronger the
depedency between X and Y .
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Testing Independency / more formally

More formally, under the

null hypothesis of independency of X and Y ,

the probability for χ2 and G2 to have the computed values
(or even larger ones) is

pχ2
df
(X > χ2) and pχ2

df
(X > G2)

Let p0 be a given threshold called significance level and
often choosen as 0.05 or 0.01.

• If p(X > χ2) < p0, we can reject the null hypothesis
and thus accept its

alternative hypothesis of dependency of X and Y .

i.e., add the edge between X and Y .

• If p(X > χ2) ≥ p0, we cannot reject the null hypothesis.
Here, we then will accept the null hypothesis,
i.e., not add the edge between X and Y .
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Example 1

observed

Y = 0 1

X = 0 3 6
1 1 2

margins

Y = 0 1
∑

X = 0 3 6 9
1 1 2 3∑

4 8 12

expected

Y = 0 1
∑

X = 0 3 6 9
1 1 2 3∑

4 8 12

χ2 = G2 = 0 and p(X > 0) = 1

Hence, for any significance level
X and Y are considered independent.

X Y
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Example 2 (1/2)

observed
Y = 0 1

X = 0 6 1
1 2 4

margins

Y = 0 1
∑

X = 0 6 1 7
1 2 4 6∑

8 5 13

expected

Y = 0 1
∑

X = 0 4.31 2.69 7
1 3.69 2.31 6∑

8 5 13

χ2 =
(6− 4.31)2

4.31
+

(1− 2.69)2

2.69
+

(2− 3.69)2

3.69
+

(4− 2.31)2

2.31
=3.75,

 pχ2
1
(X > 3.75) = 0.053

i.e., with a significance level of p0 = 0.05
we would not be able to reject the null hypothesis of
independency of X and Y .

X Y
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Example 2 (2/2)

If we use G2 instead of χ2,

G2 = 3.94, pχ2
1
(X > 3.94) = 0.047

with a significance level of p0 = 0.05
we would have to reject the null hypothesis of
independency of X and Y .

Here, we then accept the alternative, depedency of X
and Y .

X Y
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 count variables / general case

Let V be a set of random variables.

We write v ∈ V as abbreviation for v ∈
∏

dom(V).

For a dataset D ⊆
∏

dom(V) and

• each subset X ⊆ V of variables and

• each configuration x ∈ X of these variables

let
cX=x := |{d ∈ D | d|X = x}|

be a (random) variable containing the frequencies of
occurences of X = x in the data.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 G2 statistics / general case

Let X ,Y ,Z ⊆ V be three disjoint subsets of variables. If

I(X ,Y |Z)

then
p(X ,Y ,Z) =

p(X ,Z) p(Y ,Z)

p(Z)

and thus for each configuration x ∈ X , y ∈ Y, and z ∈ Z

E(cX=x,Y=y,Z=z | cX=x,Z=z, cY=y,Z=z) =
cX=x,Z=z cY=y,Z=z

cZ=z

The statistics

G2 := 2
∑
x∈X

∑
y∈Y

∑
z∈Z

cX=x,Y=y,Z=z · ln
(

cX=x,Y=y,Z=z · cZ=z

cX=x,Z=z · cY=y,Z=z

)
is asymptotically χ2-distributed with

df =
∏
X∈X

(| dom X| − 1)
∏
Y ∈Y

(| dom Y | − 1)
∏
Z∈Z

| dom Z|

degrees of freedom.
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Advanced AI Techniques / 1. Checking Probalistic Independencies

 Recommendations

Recommendations [SGS00, p. 95]:

• As heuristics, reduce degrees of freedom by 1 for
each structural zero:

dfreduced := df−|{(x, y, z) ∈ X × Y × Z | cX=x,Y=y,Z=z = 0}|

• Use G2 instead of χ2.

• If |D| < 10 df, assume conditional dependency.

Problems:

• null hypothesis is accepted if it is not rejected.
(especially problematic for small samples)

• repeated testing.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Markov-equivalence

Definition 4. Let G, H be two graphs on a set V (undi-
rected or DAGs).
G and H are called markov-equivalent, if they have the
same independency model, i.e.

IG(X,Y |Z)⇔ IH(X,Y |Z), ∀X,Y, Z ⊆ V

The notion of markov-equivalence for undirected graphs
is uninteresting, as every undirected graph is markov-
equivalent only to itself (corollary of uniqueness of mini-
mal representation!).
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Markov-equivalence

Why is markov-equivalence important?

1. in structure learning, the set of all graphs over V is our search
space.
 if we can restrict searching to equivalence classes,
the search space becomes smaller.

2. if we interpret the edges of our graph as causal relationships
between variables, it is of interest,
• which edges are necessary

(i.e., occur in all instances of the equivalence class), and

• which edges are only possible
(i.e., occur in some instances of the equivalence class, but
not in some others; i.e., there are alternative explanations).
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Markov-equivalence

Definition 5. Let G be a directed graph. We call a chain

p1 − p2 − p3

uncoupled if there is no edge between p1 and p3.

Lemma 4 (markov-equivalence criterion, [PGV90]). Let G and
H be two DAGs on the vertices V .
G and H are markov-equivalent if and only if

(i) G and H have the same links (u(G) = u(H)) and

(ii) G and H have the same uncoupled head-to-head meetings.

The set of uncoupled head-to-head meetings is also denoted as
V-structure of G.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Markov-equivalence / examples

A B

C

D

E F

G

A B

C

D

E F

G

Figure 1: Example for markov-equivalent DAGs.
,,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .

Figure 2: Which minimal DAG-representations of I are equivalent? [CGH97,
p. 240]
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Directed graph patterns

Definition 6. Let V be a set and
E ⊆ V 2 ∪ P2(V ) a set of ordered and
unordered pairs of elements of V with
(v, w), (w, v) 6∈ E for v, w ∈ V with
{v, w} ∈ E.
Then G := (V, E) is called a directed
graph pattern. The elements of V are
called vertices, the elemtents of E
edges: unordered pairs are called
undirected edges, ordered pairs
directed edges.

We say, a directed graph pattern H is a
pattern of the directed graph G, if
there is an orientation of the unoriented
edges of H that yields G, i.e.

(v, w) ∈ EG ⇒
{

(v, w) ∈ EH or
{v, w} ∈ EH

(v, w) ∈ EG ⇐ (v, w) ∈ EH

(v, w) ∈ EG or
(w, v) ∈ EG

}
⇐ {v, w} ∈ EH

A B

C

D

E F

G

Figure 3: Directed graph pattern.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 DAG patterns

Definition 7. A directed graph pattern
H is called an acyclic directed graph
pattern (DAG pattern), if

• it is the directed graph pattern of a
DAG G

or equivalently

• H does not contain a completely
directed cycle, i.e. there is no
sequence v1, . . . , vn ∈ V with
(vi, vi+1) ∈ E for i = 1, . . . , n− 1 (i.e.
the directed graph got by dropping
undirected edges is a DAG).

A B

C

D

E F

G

Figure 4: DAG pattern.

A

B C D

Figure 5: Directed graph pattern that is not a
DAG pattern.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 DAG patterns represent markov equivalence classes

Lemma 5. Each markov equivalence class corresponds uniquely
to a DAG pattern G:

The markov equivalence class consists of all DAGs that G is a
pattern of, i.e., that give G by dropping the directions of some
edges that are not part of an uncoupled head-to-head
meeting,

(i)(ii) The DAG pattern contains a directed edge (v, w), if all
representatives of the markov equivalence class contain this
directed edge, otherwise (i.e. if some representatives have
(v, w), some others (w, v)) the DAG pattern contains the
undirected edge {v, w}.

The directed edges of the DAG pattern are also called
irreversible or compelled, the undirected edges are also called
reversible.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 DAG patterns represent markov equivalence classes / example

A B

C

D

E F

G

A B

C

D

E F

G

A B

C

D

E F

G

Figure 6: DAG pattern and its markov equivalence class representatives.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 DAG patterns represent markov equivalence classes

But beware, not every DAG pattern represents a
Markov-equivalence class !
Example:

Y

X

Z

is not a DAG pattern of a Markov-equivalence class, but

Y

X

Z

is.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 DAG patterns represent markov equivalence classes

But just skeleton plus uncoupled head-to-head meetings do not
make a DAG pattern that represents a markov-equivalence class
either.
Example:

X Z

W

Y

is not a DAG pattern that represents a Markov-equivalence class,
as any of its represenatives also has Z → W . But

X Z

W

Y

is.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Computing DAG patterns

So, to compute the DAG pattern that represents the equivalence
class of a given DAG,

1. start with the skeleton plus all head-to-head-meetings,

2. add entailed edges successively (saturating).
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Saturating DAG patterns

rule 1:

path
any

Z

X

Y
 

path
any

Z

X

Y

rule 2:

Y

X

Z
 

Y

X

Z

rule 3:

X Z

W

Y

 

X Z

W

Y

rule 4:

W

Y

Z

X

 W

Y

Z

X

Dashed link can be W → Z, W ← Z, or W–Z
(so rule 4 is actually a compact notation for 3 rules).
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Computing DAG patterns

1 saturate(graph pattern G = (V, E)) :
2 apply rules 1–4 to G until no more rule matches
3 return G

1 dag-pattern(graph G = (V, E)) :
2 H := (V, F ) with F := {{x, y} | (x, y) ∈ E}
3 for X → Z ← Y uncoupled head-to-head-meeting in G do
4 orient X → Z ← Y in H

5 od
6 saturate(H)
7 return H

Figure 7: Algorithm for computing the DAG pattern of the Markov-equivalence
class of a given DAG.

Lemma 6. For a given graph G, algorithm 7 computes correctly
the DAG pattern that represents its Markov-equivalence class.
Furthermore, here, even the rule set 1–3 will do and is
non-redundant.

See [Mee95] for a proof.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Computing DAG patterns

What follows, is an alternative algorithm for computing
DAG patterns that represent the Markov-equivalence
class of a given DAG.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Toplogical edge ordering

Definition 8. Let G := (V, E) be a
directed graph.
A bijective map

τ : {1, . . . , |E|} → E

is called an ordering of the edges of
G.

An edge ordering τ is called
topological edge ordering if

(i) numbers increase on all paths, i.e.

τ−1(x, y) < τ−1(y, z)

for paths x→ y → z and

(ii) shortcuts have larger numbers, i.e.
for x, y, z with

x

y

z
it is

τ−1(x, y) < τ−1(y, z)
!
< τ−1(x, z)

x

y

z

v

w

2

4

5

1

3

Figure 8: Example for a topological edge
ordering.
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Advanced AI Techniques / 2. Markov Equivalence and DAG patterns

 Toplogical edge ordering

1 topological-edge-ordering(G = (V, E)) :
2 σ := topological-ordering(G)
3 E ′ := E

4 for i = 1, . . . , |E| do
5 Let (v, w) ∈ E ′ with σ−1(w) minimal and then with σ−1(v) maximal
6 τ(i) := (v, w)
7 E ′ := E ′ \ {(v, w)}
8 od
9 return τ

Figure 9: Algorithm for computing a topological edge ordering of a DAG.
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1 dag-pattern(G = (V, E)) :
2 τ := topological-edge-ordering(G)
3 Eirr := ∅
4 Erev := ∅
5 Erest := E

6 while Erest 6= ∅ do
7 Let (y, z) ∈ Erest with τ−1(y, z) minimal
8 [label pa(z) :]
9 if ∃(x, y) ∈ Eirr with (x, z) 6∈ E

10 Eirr := Eirr ∪ {(x
′, z) | x′ ∈ pa(z)}

11 else
12 Eirr := Eirr ∪ {(x

′, z) | (x′, y) ∈ Eirr}
13 if ∃(x, z) ∈ E with x 6∈ {y} ∪ pa(y)
14 Eirr := Eirr ∪ {(x

′, z) | (x′, z) ∈ Erest}
15 else
16 Erev := Erev ∪ {(x

′, z) | (x′, z) ∈ Erest}
17 fi
18 fi
19 Erest := E \ Eirr \ Erev

20 od
21 return Ḡ := (V, Eirr ∪ {{v, w}|(v, w) ∈ Erev})

Figure 10: Algorithm for computing the DAG pattern representing the markov equivalence class of
a DAG G. [Chi95]
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 A simple but important lemma

Lemma 7 ([Chi95]). Let G be a DAG and x, y, z three ver-
tices of G that are pairwise adjacent.
If any two of the connecting edges are reversible, then the
third one is also.
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 line 10

1 dag-pattern(G = (V, E)) :
2 τ := topological-edge-ordering(G)
3 Eirr := ∅
4 Erev := ∅
5 Erest := E

6 while Erest 6= ∅ do
7 Let (y, z) ∈ Erest with τ−1(y, z) minimal
8 [label pa(z) :]
9 if ∃(x, y) ∈ Eirr with (x, z) 6∈ E

10 Eirr := Eirr ∪ {(x
′, z) | x′ ∈ pa(z)}

11 else
12 Eirr := Eirr ∪ {(x

′, z) | (x′, y) ∈ Eirr}
13 if ∃(x, z) ∈ E with x 6∈ {y} ∪ pa(y)
14 Eirr := Eirr ∪ {(x

′, z) | (x′, z) ∈ Erest}
15 else
16 Erev := Erev ∪ {(x

′, z) | (x′, z) ∈ Erest}
17 fi
18 fi
19 Erest := E \ Eirr \ Erev

20 od
21 return Ḡ := (V, Eirr ∪ {{v, w}|(v, w) ∈ Erev})

a) x′ = y:
x

y

z

X cycle!X

b) x′ 6= y: case 1) x′ and y not
adjacent:

x’

y

z

X

case 2) x′ and y adjacent:
x’

y

z

cycle!X

x’

y

z

lemma!X
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 line 12
1 dag-pattern(G = (V, E)) :
2 τ := topological-edge-ordering(G)
3 Eirr := ∅
4 Erev := ∅
5 Erest := E

6 while Erest 6= ∅ do
7 Let (y, z) ∈ Erest with τ−1(y, z) minimal
8 [label pa(z) :]
9 if ∃(x, y) ∈ Eirr with (x, z) 6∈ E

10 Eirr := Eirr ∪ {(x
′, z) | x′ ∈ pa(z)}

11 else
12 Eirr := Eirr ∪ {(x

′, z) | (x′, y) ∈ Eirr}
13 if ∃(x, z) ∈ E with x 6∈ {y} ∪ pa(y)
14 Eirr := Eirr ∪ {(x

′, z) | (x′, z) ∈ Erest}
15 else
16 Erev := Erev ∪ {(x

′, z) | (x′, z) ∈ Erest}
17 fi
18 fi
19 Erest := E \ Eirr \ Erev

20 od
21 return Ḡ := (V, Eirr ∪ {{v, w}|(v, w) ∈ Erev})

case 1) (y, z) is irreversible:
x’

y

z

cycle!X

case 2) (y, z) is reversible:
x’

y

z

lemma!X
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 line 14

1 dag-pattern(G = (V, E)) :
2 τ := topological-edge-ordering(G)
3 Eirr := ∅
4 Erev := ∅
5 Erest := E

6 while Erest 6= ∅ do
7 Let (y, z) ∈ Erest with τ−1(y, z) minimal
8 [label pa(z) :]
9 if ∃(x, y) ∈ Eirr with (x, z) 6∈ E

10 Eirr := Eirr ∪ {(x
′, z) | x′ ∈ pa(z)}

11 else
12 Eirr := Eirr ∪ {(x

′, z) | (x′, y) ∈ Eirr}
13 if ∃(x, z) ∈ E with x 6∈ {y} ∪ pa(y)
14 Eirr := Eirr ∪ {(x

′, z) | (x′, z) ∈ Erest}
15 else
16 Erev := Erev ∪ {(x

′, z) | (x′, z) ∈ Erest}
17 fi
18 fi
19 Erest := E \ Eirr \ Erev

20 od
21 return Ḡ := (V, Eirr ∪ {{v, w}|(v, w) ∈ Erev})

a) x′ = x:
x

y

z

X

b) x′ 6= x: case 1) (x′, y) irre-
versible

x’

y

z

cycle!X

case 2) (x′, y) is reversible:
x’

y

z

lemma!X
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 Summary (1/2)

• (Conditional) probabilistic independence in estimated JPDs
has to be checked by means of a statistical test (e.g., χ2, G2).

• For those tests, a test statistics (χ2) is computed and its
probability under the assumption of independence is
computed.
1. If this is too small, the independency assumption is rejected

and dependency assumed.

2. If this exceeds a given lower bound, the independency
assumption cannot be rejected and independency assumed.
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 Summary (2/2)

• Some DAGs encode the same independency relation (Markov
equivalence).

• A Markov equivalence class can be represented by a DAG
pattern.
(but not all DAG patterns represent a Markov equivalence
class!)

• For a given DAG, its DAG pattern can be computed by
1. start from the undirected skeleton,

2. add all directions of uncoupled head-to-head meetings,

3. saturate infered directions (using 3 rules).
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