

Advanced AI Techniques

I. Bayesian Networks / 1. Probabilistic Independence and Separation in Graphs

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme

Institute of Computer Science
University of Freiburg
http://www.informatik.uni-freiburg.de/

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

1/50

Advanced AI Techniques

Outline of Part 1: Learning Bayesian Networks NIVERSITÄT FREIBURG

	section	key concepts
I.	Probabilistic Independence and Separation in Graphs	Prob. independence, separation in graphs, Bayesian Network
II.	Learning Parameters	Max. likelihood estimation, max. a posterior estimation
III.	Learning Parameters with Missing Values	EM algo.
IV.	Learning Structure by Constrained-based Learning	Markov equivalence, graph patterns, PC algo.
V.	Learning Structure by Local Search	Bayesian Information Criterion (BIC), K2 algo., GES algo.

- 1. Basic Probability Calculus
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks
- 5. Bayesian networks

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

2/50

Advanced AI Techniques / 1. Basic Probability Calculus

Joint probability distributions

Pain	Y				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	Ν	Y	Ν	Y	Ν	Y	Ν
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 1: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

Joint probability distributions

Discrete JPDs are described by

- nested tables,
- multi-dimensional arrays,
- data cubes, or
- tensors

having entries in [0,1] and summing to 1.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

3/50

Advanced AI Techniques / 1. Basic Probability Calculus

Marginal probability distributions

Definition 1. Let p be a the joint probability of the random variables $\mathcal{X} := \{X_1, \dots, X_n\}$ and $\mathcal{Y} \subseteq \mathcal{X}$ a subset thereof. Then

$$p(\mathcal{Y} = y) := p^{\downarrow \mathcal{Y}}(y) := \sum_{x \in \text{dom } \mathcal{X} \backslash \mathcal{Y}} p(\mathcal{X} \backslash \mathcal{Y} = x, \mathcal{Y} = y)$$

is a probability distribution of $\mathcal Y$ called **marginal probability distribution**.

Example 1. Marginal p(V, A):

Vomiting	Y	Ν
Adeno Y	0.350	0.350
N	0.090	0.210

Pain	Υ				N			
Weightloss	Y		N		Y		N	
Vomiting	Y	Ν	Y	Ν	Y	Ν	Y	N
Adeno Y	0.220	0.220	0.025	0.025	0.095	0.095	0.010	0.010
N	0.004	0.009	0.005	0.012	0.031	0.076	0.050	0.113

Figure 2: Joint probability distribution p(P, W, V, A) of four random variables P (pain), W (weightloss), V (vomiting) and A (adeno).

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Marginal probability distributions / example

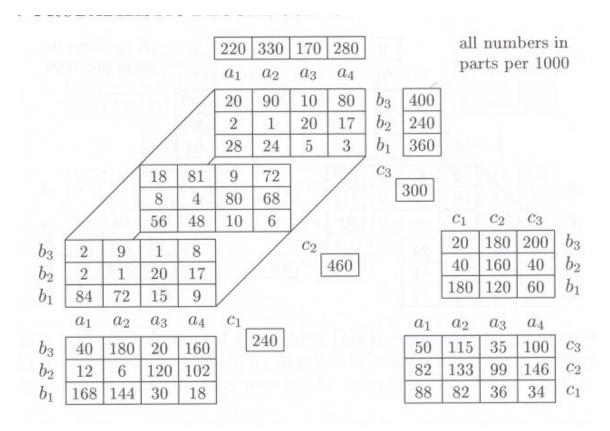


Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

5/50

Advanced AI Techniques / 1. Basic Probability Calculus

Extreme and non-extreme probability distributions IVERSITÄT FREIBURG

Definition 2. By p > 0 we mean

$$p(x)>0,\quad \text{ for all } x\in \prod \mathrm{dom}(p)$$

Then p is called **non-extreme**.

Example 2.

$$\begin{pmatrix} 0.4 & 0.0 \\ 0.3 & 0.3 \end{pmatrix} \qquad \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

Conditional probability distributions

Definition 3. For a JPD p and a subset $\mathcal{Y} \subseteq \text{dom}(p)$ of its variables with $p^{\downarrow \mathcal{Y}} > 0$ we define

$$p^{|\mathcal{Y}} := \frac{p}{p^{\downarrow \mathcal{Y}}}$$

as conditional probability distribution of p w.r.t. \mathcal{Y} .

A conditional probability distribution w.r.t. \mathcal{Y} sums to 1 for all fixed values of \mathcal{Y} , i.e.,

$$(p^{|\mathcal{Y}})^{\downarrow \mathcal{Y}} \equiv 1$$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

7/50

Advanced AI Techniques / 1. Basic Probability Calculus

Conditional probability distributions / example UNIVERSITÄT FREIBURG

Example 3. Let p be the JPD

$$p := \begin{pmatrix} 0.4 & 0.1 \\ 0.2 & 0.3 \end{pmatrix}$$

on two variables R (rows) and C (columns) with the domains $dom(R) = dom(C) = \{1, 2\}$.

The conditional probability distribution w.r.t. C is

$$p^{|C} := \begin{pmatrix} 2/3 & 1/4 \\ 1/3 & 3/4 \end{pmatrix}$$

Chain rule

Lemma 1 (Chain rule). Let p be a JPD on variables X_1, X_2, \ldots, X_n with $p(X_1, \ldots, X_{n-1}) > 0$. Then

$$p(X_1, X_2, \dots, X_n) = p(X_n | X_1, \dots, X_{n-1}) \cdots p(X_2 | X_1) \cdot p(X_1)$$

The chain rule provides a **factorization** of the JPD in some of its conditional marginals.

The factorizations stemming from the chain rule are trivial as they have as many parameters as the original JPD:

#parameters =
$$2^{n-1} + 2^{n-2} + \cdots + 2^1 + 2^0 = 2^n - 1$$

(example computation for all binary variables)

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

9/50

Advanced Al Techniques / 1. Basic Probability Calculus

Bayes formula

Lemma 2 (Bayes Formula). Let p be a JPD and \mathcal{X}, \mathcal{Y} be two disjoint sets of its variables. Let $p(\mathcal{Y}) > 0$. Then

$$p(\mathcal{X} \mid \mathcal{Y}) = \frac{p(\mathcal{Y} \mid \mathcal{X}) \cdot p(\mathcal{X})}{p(\mathcal{Y})}$$

Thomas Bayes (1701/2–1761)

Independent variables

Definition 4. Two sets \mathcal{X}, \mathcal{Y} of variables are called **independent**, when

$$p(\mathcal{X} = x, \mathcal{Y} = y) = p(\mathcal{X} = x) \cdot p(\mathcal{Y} = y)$$

for all x and y or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y) = p(\mathcal{X} = x)$$

for y with $p(\mathcal{Y} = y) > 0$.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

11/50

Advanced AI Techniques / 1. Basic Probability Calculus

Independent variables / example

Example 4. Let Ω be the cards in an ordinary deck and R = true, if a card is royal,

- \bullet T = true, if a card is a ten or a jack,
- \bullet S =true, if a card is spade.

Cards for a single color:

ROYALS

S	R	T	p(R,T S)
Υ	Υ	Υ	1/13
		Ν	2/13
	Ν	Υ	1/13
		Ν	9/13
Ν	Υ	Υ	3/39 = 1/13
		Ν	6/39 = 2/13
	Ν	Υ	3/39 = 1/13
		N 1	07/00 0/40

R	T	p(R,T)
Υ	Υ	4/52 = 1/13
	Ν	8/52 = 2/13
Ν	Υ	4/52 = 1/13
	N	36/52 = 9/13

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

Conditionally independent variables

Definition 5. Let \mathcal{X}, \mathcal{Y} , and \mathcal{Z} be sets of variables.

 \mathcal{X}, \mathcal{Y} are called **conditionally independent given** \mathcal{Z} , when for all events $\mathcal{Z}=z$ with $p(\mathcal{Z}=z)>0$ all pairs of events $\mathcal{X}=x$ and $\mathcal{Y}=y$ are conditionally independend given $\mathcal{Z}=z$, i.e.

$$p(\mathcal{X}=x,\mathcal{Y}=y,\mathcal{Z}=z) = \frac{p(\mathcal{X}=x,\mathcal{Z}=z) \cdot p(\mathcal{Y}=y,\mathcal{Z}=z)}{p(\mathcal{Z}=z)}$$

for all x,y and z (with $p(\mathcal{Z}=z)>0$), or equivalently

$$p(\mathcal{X} = x | \mathcal{Y} = y, \mathcal{Z} = z) = p(\mathcal{X} = x | \mathcal{Z} = z)$$

We write $I_p(\mathcal{X}, \mathcal{Y}|\mathcal{Z})$ for the statement, that \mathcal{X} and \mathcal{Y} are conditionally independent given \mathcal{Z} .

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

13/50

Advanced AI Techniques / 1. Basic Probability Calculus

Example 5. Assume S (shape), C (color), and L (label) be three random variables that are distributed as shown in figure 4.

We show $I_p(\{L\}, \{S\}|\{C\})$, i.e., that label and shape are conditionally independent given the color.

C	S	L	p(L C,S)
black	square	1	2/6 = 1/3
		2	4/6 = 2/3
	round	1	1/3
		2	2/3
white	square	1	1/2
		2	1/2
	round	1	1/2
		2	1/2

C	L	p(L C)
black	1	3/9 = 1/3
	2	6/9 = 2/3
white	1	2/4 = 1/2
	2	2/4 = 1/2

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].

- 1. Basic Probability Calculus
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks
- 5. Bayesian networks

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

15/50

Advanced AI Techniques / 2. Separation in undirected graphs

Separation in graphs (u-separation)

Definition 6. Let G:=(V,E) be a graph. Let $Z\subseteq V$ be a subset of vertices. We say, two vertices $x,y\in V$ are **u-separated by** Z **in** G, if every path from x to y contains some vertex of Z ($\forall p\in G^*: p_1=x, p_{|p|}=y\Rightarrow \exists i\in\{1,\ldots,n\}: p_i\in Z$).

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are **u-separated by** Z **in** G, if every path from any vertex from X to any vertex from Y is separated by Z, i.e., contains some vertex of Z.

We write $I_G(X,Y|Z)$ for the statement, that X and Y are u-separated by Z in G.

 I_G is called **u-separation relation in** G.

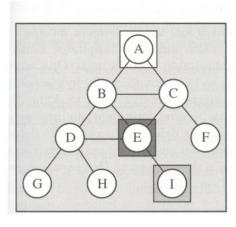
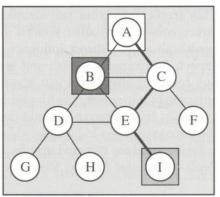
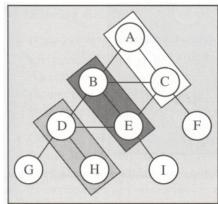


Figure 5: Example for u-separation [CGH97, p. 179].

Separation in graphs (u-separation)





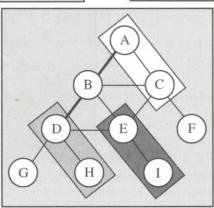


Figure 6: More examples for u-separation [CGH97, p. 179].

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

16/50

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Advanced AI Techniques / 2. Separation in undirected graphs

Checking u-separation

To test, if for a given graph G = (V, E) two given sets $X, Y \subseteq V$ of vertices are u-separated by a third given set $Z \subseteq V$ of vertices, we may use standard breadth-first search to compute all vertices that can be reached from X (see, e.g., [OW02], [CLR90]).

```
\begin{array}{ll} \textit{l} & \text{breadth-first search}(G,X): \\ \textit{l} & \textit{border}:=X \\ \textit{l} & \textit{reached}:=\emptyset \\ \textit{l} & \underline{\textbf{while}} & \textit{border}\neq\emptyset \, \underline{\textbf{do}} \\ \textit{l} & \textit{reached}:=\textit{reached}\cup\textit{border} \\ \textit{l} & \textit{border}:=\text{fan}_G(\textit{border})\setminus\textit{reached} \\ \textit{l} & \underline{\textbf{od}} \\ \textit{l} & \underline{\textbf{return}} & \textit{reached} \end{array}
```

Figure 7: Breadth-first search algorithm for enumerating all vertices reachable from *X*.

For checking u-separation we have to tweak the algorithm

- not to add vertices from Z to the border and
- 2. to stop if a vertex of Y has been reached.

```
check-u-separation(G, X, Y, Z):

border := X

reached := \emptyset

while border \neq \emptyset do

reached := reached \cup border

border := \operatorname{fan}_G(\operatorname{border}) \setminus \operatorname{reached} \setminus Z

if border \cap Y \neq \emptyset

return false

final odd

return true
```

Figure 8: Breadth-first search algorithm for checking u-separation of X and Y by Z.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

- 1. Basic Probability Calculus
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks
- 5. Bayesian networks

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

18/50

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Advanced AI Techniques / 3. Separation in directed graphs

Chains

Definition 7. Let G:=(V,E) be a directed graph. We can construct an **undirected skeleton** u(G):=(V,u(E)) **of** G by dropping the directions of the edges:

$$u(E) := \{ \{x, y\} \mid (x, y) \in E \text{ or } (y, x) \in E \}$$

The paths on u(G) are called **chains of** G:

$$G^{\blacktriangle} := u(G)^*$$

i.e., a chain is a sequence of vertices that are linked by a forward or a backward edge. If we want to stress the directions of the linking edges, we denote a chain $p=(p_1,\ldots,p_n)\in G^\blacktriangle$ by

$$p_1 \leftarrow p_2 \rightarrow p_3 \leftarrow \cdots \leftarrow p_{n-1} \rightarrow p_n$$

The notions of length, subchain, interior and proper carry over from undi-

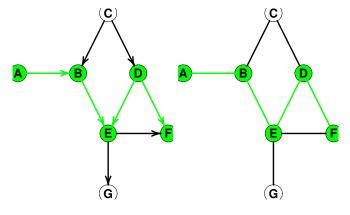


Figure 9: Chain (A,B,E,D,F) on directed graph and path on undirected skeleton.

Blocked chains

Definition 8. Let G:=(V,E) be a directed graph. We call a chain

$$p_1 \rightarrow p_2 \leftarrow p_3$$

a head-to-head meeting.

Let $Z \subseteq V$ be a subset of vertices. Then a chain $p \in G^{\blacktriangle}$ is called **blocked** at **position** i by Z, if for its subchain (p_{i-1}, p_i, p_{i+1}) there is

$$egin{cases} p_i \in Z, & \text{if not } p_{i-1}
ightarrow p_i \leftarrow p_{i+1}, \ p_i
ot\in Z \cup \mathrm{anc}(Z), & ext{else} \end{cases}$$

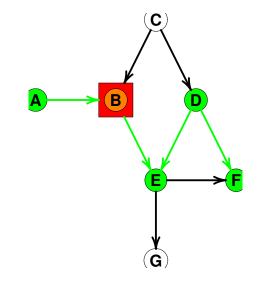


Figure 10: Chain (A,B,E,D,F) is blocked by $Z=\{B\}$ at 2.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

Advanced AI Techniques / 3. Separation in directed graphs

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

19/50

Blocked chains / more examples

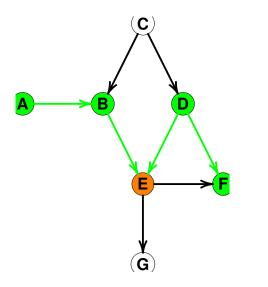


Figure 11: Chain (A,B,E,D,F) is blocked by $Z=\emptyset$ at 3.

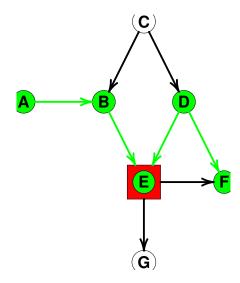
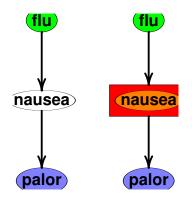


Figure 12: Chain (A,B,E,D,F) is **not** blocked by $Z=\{E\}$ at 3.

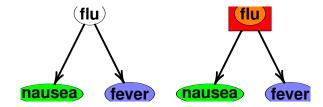
Blocked chains / rationale

The notion of blocking is choosen in a way so that chains model "flow of causal influence" through a causal network where the states of the vertices Z are already know.

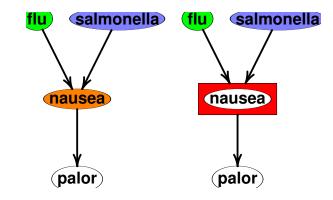
1) Serial connection / intermediate cause:



2) Diverging connection / common cause:



3) Converging connection / common effect:



Models "discounting" [Nea03, p. 51].

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

21/50

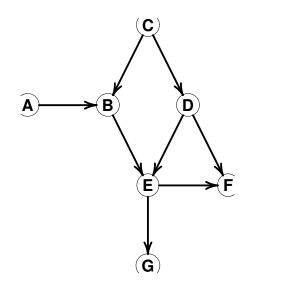
Advanced AI Techniques / 3. Separation in directed graphs

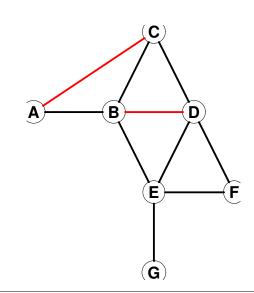
The moral graph

Definition 9. Let G := (V, E) be a DAG.

As the **moral graph of** G we denote the undirected skeleton graph of G plus additional edges between each two parents of a vertex, i.e. $\operatorname{moral}(G) := (V, E')$ with

$$E' := u(E) \cup \{ \{x, y\} \mid \exists z \in V : x, y \in pa(z) \}$$





Separation in DAGs (d-separation)

Let G := (V, E) be a DAG.

Let $X, Y, Z \subseteq V$ be three disjoint subsets of vertices. We say, the vertices X and Y are **separated by** Z **in** G, if

- (i) every chain from any vertex from X to any vertex from Y is blocked by Z or equivalently
- (ii) X and Y are u-separated by Z in the moral graph of the ancestral hull of $X \cup Y \cup Z$.

We write $I_G(X, Y|Z)$ for the statement, that X and Y are separated by Z in G.

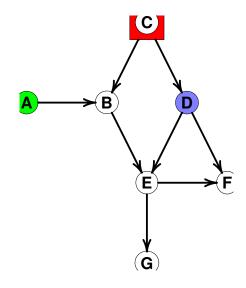


Figure 15: Are the vertices A and D separated by C in G?

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

23/50

Advanced AI Techniques / 3. Separation in directed graphs

Separation in DAGs (d-separation) / examples UNIVERSITÄT FREIBURG

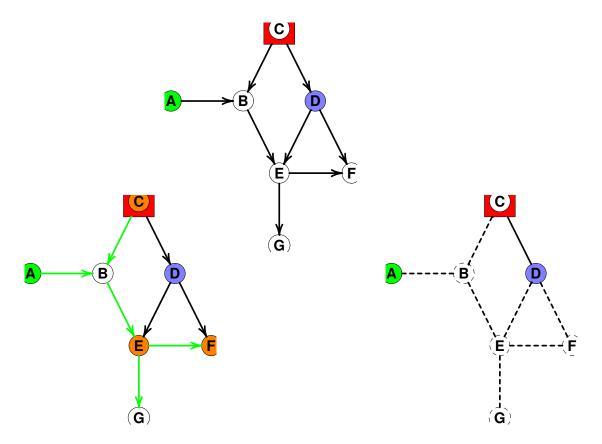


Figure 16: A and D are separated by C in G.

Separation in DAGs (d-separation) / more examples VERSITÄT FREIBURG

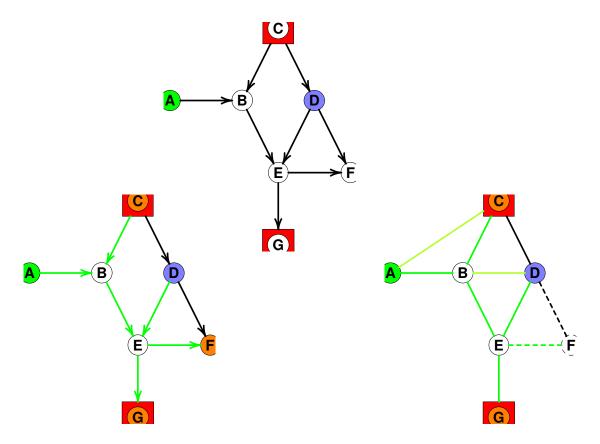


Figure 17: A and D are not separated by $\{C,G\}$ in G.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

25/50

Advanced AI Techniques / 3. Separation in directed graphs

Checking d-separation

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

To test, if for a given graph G=(V,E) two given sets $X,Y\subseteq V$ of vertices are d-separated by a third given set $Z\subseteq V$ of vertices, we may

- build the moral graph of the ancestral hull and
- apply the u-separation criterion.

```
1 check-d-separation(G, X, Y, Z):
2 G' := \text{moral}(\text{anc}_G(X \cup Y \cup Z))
3 return check-u-separation(G', X, Y, Z)
```

Figure 18: Algorithm for checking d-separation via u-separation in the moral graph.

A drawback of this algorithm is that we have to rebuild the moral graph of the ancestral hull whenever X or Y changes.

Checking d-separation

 $(z \in \text{fanout}(y))$

if $y \in Z \cup \operatorname{anc}(Z)$

 $\in \text{fanin}(y)$

Instead of constructing a moral graph, we can modify a breadth-first search for chains to find all vertices not d-separated from X by Z in G.

The breadth-first search must not hop over head-to-head meetings with the middle vertex not in \mathbb{Z} nor having an descendent in \mathbb{Z} .

```
Figure 19: Restricted breadth-first search of non-blocked chains.

Figure 19: Restricted breadth-first search of non-blocked chains.
```

Figure 20: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted breadth-first search (see [Nea03, p. 80–86] for another formulation).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

27/50

Advanced AI Techniques

- 1. Basic Probability Calculus
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks
- 5. Bayesian networks

Complete graphs, orderings

Definition 10. An undirected graph G := (V, E) is called **complete**, if it contains all possible edges (i.e. if $E = \mathcal{P}^2(V)$).

Definition 11. Let G:=(V,E) be a directed graph.

A bijective map

$$\sigma: \{1, \dots, |V|\} \to V$$

is called an **ordering of (the vertices** of) G.

We can write an ordering as enumeration of V, i.e. as v_1, v_2, \ldots, v_n with $V = \{v_1, \ldots, v_n\}$ and $v_i \neq v_j$ for $i \neq j$.

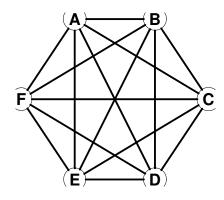


Figure 21: Undirected complete graph with 6 vertices.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

28/50

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Advanced AI Techniques / 4. Markov networks

Topological orderings (1/2)

Definition 12. An ordering $\sigma=(v_1,\ldots,v_n)$ is called **topological ordering** if

(i) all parents of a vertex have smaller numbers, i.e.

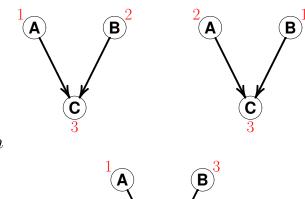
$$fanin(v_i) \subseteq \{v_1, \dots, v_{i-1}\}, \quad \forall i = 1, \dots, n$$
or equivalently

(ii) all edges point from smaller to larger numbers

$$(v, w) \in E \Rightarrow \sigma^{-1}(v) < \sigma^{-1}(w), \quad \forall v, w \in V$$

The reverse of a topological ordering – e.g. got by using the fanout instead of the fanin – is called **ancestral numbering**.

In general there are several topological orderings of a DAG.



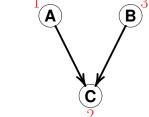


Figure 22: DAG with different topological orderings: $\sigma_1 = (A, B, C)$ and $\sigma_2 = (B, A, C)$. The ordering $\sigma_3 = (A, C, B)$ is not topological.

Topological orderings (2/2)

Lemma 3. Let G be a directed graph. Then

G is acyclic (a DAG) \Leftrightarrow G has a topological ordering

1 topological-ordering(G = (V, E)): 2 choose $v \in V$ with $fanout(v) = \emptyset$ 3 $\sigma(|V|) := v$

4 $\sigma|_{\{1,\ldots,|V|-1\}} := \text{topological-ordering}(G \setminus \{v\})$

5 return σ

Figure 23: Algorithm to compute a topological ordering of a DAG.

Exercise: write an algorithm for checking if a given directed graph is a acyclic.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

30/50

Advanced AI Techniques / 4. Markov networks

Complete DAGs

Definition 13. A DAG G:=(V,E) is called complete, if

- (i) it has a topological ordering $\sigma=(v_1,\ldots,v_n)$ with $\mathrm{fanin}(v_i)=\{v_1,\ldots,v_{i-1}\},\quad \forall i=1,\ldots,n$ or equivalently
- (ii) it has exactly one topological ordering or equivalently
- (iii) every additional edge introduces a cycle.

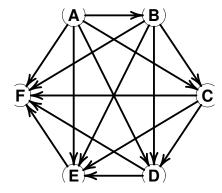


Figure 24: Complete DAG with 6 vertices. Its topological ordering is $\sigma=(A,B,C,D,E,F)$.

ALBERT-LUDWIGS-

Graph representations of ternary relations on $\mathcal{P}(V)$ IVERSITÄT FREIBURG

Definition 14. Let V be a set and I a ternary relation on $\mathcal{P}(V)$ (i.e. $I\subseteq \mathcal{P}(V)^3$). In our context I is often called an **independency model**.

Let G be a graph on V (undirected or DAG).

G is called a **representation of** I, if

$$I_G(X,Y|Z) \Rightarrow I(X,Y|Z) \quad \forall X,Y,Z \subseteq V$$

A representation G of I is called **faith- ful**, if

$$I_G(X,Y|Z) \Leftrightarrow I(X,Y|Z) \quad \forall X,Y,Z \subseteq V$$

Representations are also called **in-dependency maps of** I or **markov w.r.t.** I, faithful representations are also called **perfect maps of** I.

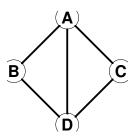


Figure 25: Non-faithful representation of

$$I := \{(A, B | \{C, D\}), (B, C | \{A, D\}), (B, A | \{C, D\}), (C, B | \{A, D\})\}$$

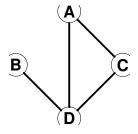


Figure 26: Faithful representation of I. Which I?

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

32/50

Advanced AI Techniques / 4. Markov networks

Faithful representations

In G also holds

$$I_G(B, \{A, C\}|D), I_G(B, A|D), I_G(B, C|D),$$
 so G is not a representation of

$$I := \{(A, B | \{C, D\}), (B, C | \{A, D\}), (B, A | \{C, D\}), (C, B | \{A, D\})\}$$

at all. It is a representation of

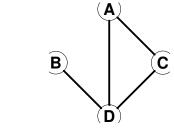


Figure 27: Faithful representation of J.

$$J := \{(A, B | \{C, D\}), (B, C | \{A, D\}), (B, \{A, C\} | D), (B, A | D), (B, C | D), (B, A | \{C, D\}), (C, B | \{A, D\}), (\{A, C\}, B | D), (A, B | D), (C, B | D)\}$$

and as all independency statements of J hold in G, it is faithful.

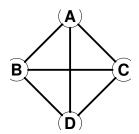
Trivial representations

For a complete undirected graph or a complete DAG G := (V, E) there is

$$I_G \equiv \mathsf{false},$$

i.e. there are no triples $X,Y,Z\subseteq V$ with $I_G(X,Y|Z)$. Therefore G represents any independency model I on V and is called **trivial representation**.

There are independency models without faithful representation.



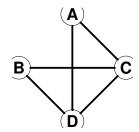


Figure 28: Independency model

$$I := \{(A, B | \{C, D\})\}$$

without faithful representation.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

34/50

Advanced AI Techniques / 4. Markov networks

Minimal representations

Definition 15. A representation G of I is called **minimal**, if none of its subgraphs omitting an edge is a representation of I.

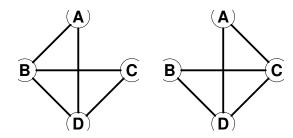


Figure 29: Different minimal undirected representations of the independency model

$$\begin{split} I := \{ (A, B | \{C, D\}), (A, C | \{B, D\}), \\ (B, A | \{C, D\}), (C, A | \{B, D\}) \} \end{split}$$

Minimal representations

Lemma 4 (uniqueness of minimal undirected representation).

An independency model I has exactly one minimal undirected representation, if and only if it is

- (i) symmetric: $I(X,Y|Z) \Rightarrow I(Y,X|Z)$.
- (ii) decomposable: $I(X,Y|Z) \Rightarrow I(X,Y'|Z)$ for any $Y' \subseteq Y$
- (iii) intersectable: $I(X,Y|Y'\cup Z)$ and $I(X,Y'|Y\cup Z)\Rightarrow I(X,Y\cup Y'|Z)$

Then this representation is G = (V, E) with

$$E := \{\{x, y\} \in \mathcal{P}^2(V) \mid not \ I(x, y|V \setminus \{x, y\})\}$$

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

36/50

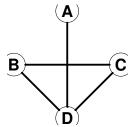
Advanced AI Techniques / 4. Markov networks

Example 6.

$$I := \{(A, B | \{C, D\}), (A, C | \{B, D\}), (A, \{B, C\} | D), (A, B | D), (A, C | D), (B, A | \{C, D\}), (C, A | \{B, D\}), (\{B, C\}, A | D), (B, A | D), (C, A | D)\}$$

is symmetric, decomposable and intersectable.

Its unique minimal undirected representation is



If a faithful representation exists, obviously it is the unique minimal representation, and thus can be constructed by the rule in lemma 4.

Representation of conditional independency UNIVERSITÄT FREIBURG

Definition 16. We say, a graph represents a JPD p, if it represents the conditional independency relation I_p of p.

General JPDs may have several minimal undirected representations (as they may violate the intersection property).

Non-extreme JPDs have a unique minimal undirected representation.

To compute this representation we have to check $I_n(X, Y|V \setminus \{X, Y\})$ for all pairs of variables $X, Y \in V$, i.e.

$$p \cdot p^{\downarrow V \backslash \{X,Y\}} = p^{\downarrow V \backslash \{X\}} \cdot p^{\downarrow V \backslash \{Y\}}$$

Then the minimal representation is the complete graph on V omitting the edges $\{X,Y\}$ for that $I_p(X,Y|V \setminus \{X,Y\})$ holds.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

38/50

Advanced AI Techniques / 4. Markov networks

Representation of conditional independency UNIVERSITÄT FREIBURG

Example 7. Let p be the JPD on V := | Its marginals are: $\{X, Y, Z\}$ given by:

J		,	
Z	X	Y	p(X, Y, Z)
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{\downarrow V \setminus \{X,Y\}} = p^{\downarrow V \setminus \{X\}}$. $p^{\downarrow V\setminus\{Y\}}$ one finds that the only independency relations of p are $I_p(X,Y|Z)$ and $I_p(Y, X|Z)$.

Z	X	p(X,Z)	Z	Y	p(Y,Z)
0	0	0.08	0	0	0.06
0	1	0.12	0	1	0.14
1	0	0.24	1	0	0.32
1	1	0.56	1	1	0.48

X	Y	p(X,Y)
0	0	0.12
0	1	0.2
1	0	0.26
1	1	0.42

X	p(X)	Y	p(Y)	Z	p(Z)
0	0.32	0	0.38	0	0.2
1	0.68	1	0.62	1	0.8

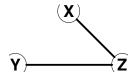
Representation of conditional independency UNIVERSITÄT FREIBURG

Example 7 (cont.).

•		,	
Z	X	Y	p(X,Y,Z)
0	0	0	0.024
0	0	1	0.056
0	1	0	0.036
0	1	1	0.084
1	0	0	0.096
1	0	1	0.144
1	1	0	0.224
1	1	1	0.336

Checking $p \cdot p^{\downarrow V \setminus \{X,Y\}} = p^{\downarrow V \setminus \{X\}} \cdot p^{\downarrow V \setminus \{Y\}}$ one finds that the only independency relations of p are $I_p(X,Y|Z)$ and $I_p(Y,X|Z)$.

Thus, the graph



represents p, as its independency model is $I_G := \{(X, Y|Z), (Y, X|Z)\}.$

As for p only $I_p(X,Y|Z)$ and $I_p(Y,X|Z)$ hold, G is a faithful representation.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced AI Techniques, winter term 2005

39/50

Advanced AI Techniques / 4. Markov networks

Markov networks

Definition 17. A pair $(G, (\psi_C)_{C \in \mathcal{C}_G})$ consisting of

- (i) an undirected graph ${\cal G}$ on a set of variables ${\cal V}$ and
- (ii) a set of potentials

$$\psi_C: \prod_{X \in C} \operatorname{dom}(X) \to \mathbb{R}_0^+, \quad C \in \mathcal{C}_G$$

on the cliques¹⁾ of G (called **clique potentials**)

is called a markov network.

1) on the product of the domains of the variables of each clique.

Thus, a markov network encodes

(i) a joint probability distribution factorized as

$$p = (\prod_{C \in \mathcal{C}_C} \psi_C)^{|\emptyset}$$

and

(ii) conditional independency statements

$$I_G(X,Y|Z) \Rightarrow I_p(X,Y|Z)$$

 ${\cal G}$ represents p, but not necessarily faithfully.

Under some regularity conditions (not covered here), ψ_{C_i} can be choosen as conditional probabilities $p^{\downarrow C_i \mid S_i}$.

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Markov networks / examples

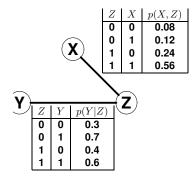


Figure 30: Example for a markov network.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

41/50

Advanced AI Techniques

- 1. Basic Probability Calculus
- 2. Separation in undirected graphs
- 3. Separation in directed graphs
- 4. Markov networks
- 5. Bayesian networks

DAG-representations

Lemma 5 (criterion for DAG-representation). Let p be a joint probability distribution of the variables V and G be a graph on the vertices V. Then:

G represents $p \Leftrightarrow v$ and $\operatorname{nondesc}(v)$ are conditionally independent given $\operatorname{pa}(v)$ for all $v \in V$, i.e.,

 $I_p(\{v\}, \text{nondesc}(v) | \text{pa}(v)), \quad \forall v \in V$

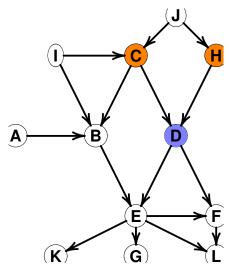


Figure 31: Parents of a vertex (orange).

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

42/50

Advanced AI Techniques / 5. Bayesian networks

Example for a not faithfully DAG-representable independency independency in the control of the c

Probability distributions may have no faithful DAG-representation.

Example 8. The independency model

$$I := \{I(x, y|z), I(y, x|z), I(x, y|w), I(y, x|w)\}\$$

does not have a faithful DAG-representation. [CGH97, p. 239]

Exercise: compute all minimal DAG-representations of I using lemma 6 and check if they are faithful.

Minimal DAG-representations

Lemma 6 (construction and uniqueness of minimal DAG-representation, [VP90] Let I be an independence model of a JPD p. Then:

(i) A minimal DAG-representation can be constructed as follows: Choose an arbitrary ordering $\sigma := (v_1, \ldots, v_n)$ of V. Choose a minimal set $\pi_i \subseteq \{v_1, \ldots, v_{i-1}\}$ of σ -precursors of v_i with

$$I(v_i, \{v_1, \ldots, v_{i-1}\} \setminus \pi_i | \pi_i)$$

Then G := (V, E) with

$$E := \{(w, v_i) \mid i = 1, \dots, n, w \in \pi_i\}$$

is a minimal DAG-representation of p.

(ii) If p also is non-extreme, then the minimal representation G is unique up to ordering σ .

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

44/50

Advanced AI Techniques / 5. Bayesian networks

Minimal DAG-representations / example

$$I := \{(A, C|B), (C, A|B)\}$$

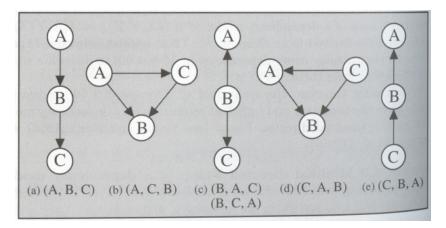


Figure 32: Minimal DAG-representations of *I* [CGH97, p. 240].

Minimal representations / conclusion

Representations always exist (e.g., trivial).

Minimal representations always exist (e.g., start with trivial and drop edges successively).

	Markov network (undirected)		Bayesian network (directed)	
	minimal	faithful	minimal	faithful
general JPD	may not be	may not	may not be	may not
	unique	exist	unique	exist
non-extreme JPD	unique	may not	unique up	may not
		exist	to ordering	exist

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

46/50

Advanced AI Techniques / 5. Bayesian networks

Bayesian Network

Definition 18. A pair $(G := (V, E), (p_v)_{v \in V})$ consisting of

- (i) a directed graph G on a set of variables V and
- (ii) a set of conditional probability distributions

$$p_X : \operatorname{dom}(X) \times \prod_{Y \in \operatorname{pa}(X)} \operatorname{dom}(Y) \to \mathbb{R}_0^+$$

at the vertices $X \in V$ conditioned on its parents (called (conditional) vertex probability distributions)

is called a bayesian network.

Thus, a bayesian network encodes

(i) a joint probability distribution factorized as

$$p = \prod_{X \in V} p(X|\operatorname{pa}(X))$$

(ii) conditional independency statements

$$I_G(X,Y|Z) \Rightarrow I_p(X,Y|Z)$$

 ${\cal G}$ represents p, but not necessarily faithfully.

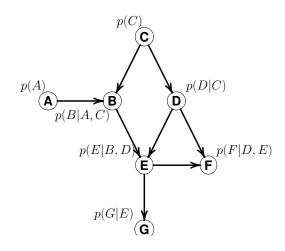


Figure 33: Example for a bayesian network.

Types of probabilistic networks

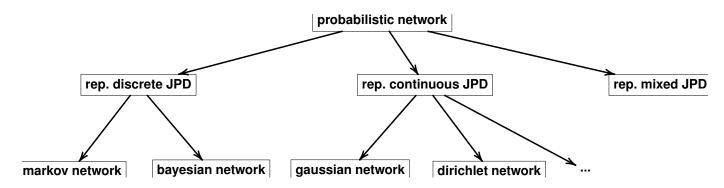


Figure 34: Types of probabilistic networks.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany, Course on Advanced Al Techniques, winter term 2005

48/50

Advanced AI Techniques / 5. Bayesian networks

— ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

References

- [BK02] Christian Borgelt and Rudolf Kruse. *Graphical Models*. Wiley, New York, 2002.
- [CGH97] Enrique Castillo, José Manuel Gutiérrez, and Ali S. Hadi. *Expert Systems and Probabilistic Network Models*. Springer, New York, 1997.
- [CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. *Introduction to Algorithms*. MIT Press, Cambridge, Massachusetts, 1990.
- [Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
- [OW02] Thomas Ottmann and Peter Widmayer. *Algorithmen und Datenstrukturen*. Spektrum Verlag, Heidelberg, 2002.
- [VP90] Thomas Verma and Judea Pearl. Causal networks: semantics and expressiveness. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, and John F. Lemmer, editors, *Uncertainty in Artificial Intelligence 4*, pages 69–76. North-Holland, Amsterdam, 1990.