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section key concepts

I. Probabilistic Independence
and Separation in Graphs

Prob. independence,
separation in graphs,
Bayesian Network

II. Learning Parameters Max. likelihood estimation,
max. a posterior estimation

III. Learning Parameters with
Missing Values

EM algo.

IV. Learning Structure by
Constrained-based
Learning

Markov equivalence,
graph patterns, PC algo.

V. Learning Structure by Local
Search

Bayesian Information
Criterion (BIC), K2 algo.,
GES algo.
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Advanced AI Techniques / 1. Basic Probability Calculus

 Joint probability distributions

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113

Figure 1: Joint probability distribution p(P,W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Advanced AI Techniques / 1. Basic Probability Calculus

 Joint probability distributions

Discrete JPDs are described by

• nested tables,

• multi-dimensional arrays,

• data cubes, or

• tensors

having entries in [0, 1] and summing to 1.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
Course on Advanced AI Techniques, winter term 2005 3/50

Advanced AI Techniques / 1. Basic Probability Calculus

 Marginal probability distributions

Definition 1. Let p be a the joint probability of the random vari-
ables X := {X1, . . . , Xn} and Y ⊆ X a subset thereof. Then

p(Y = y) := p↓Y(y) :=
∑

x∈domX\Y

p(X \ Y = x,Y = y)

is a probability distribution of Y called marginal probability dis-
tribution.

Example 1. Marginal p(V,A):

Vomiting Y N
Adeno Y 0.350 0.350

N 0.090 0.210

Pain Y N
Weightloss Y N Y N

Vomiting Y N Y N Y N Y N
Adeno Y 0.220 0.220 0.025 0.025 0.095 0.095 0.010 0.010

N 0.004 0.009 0.005 0.012 0.031 0.076 0.050 0.113
Figure 2: Joint probability distribution p(P,W, V,A) of four random variables P (pain), W (weight-
loss), V (vomiting) and A (adeno).
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Advanced AI Techniques / 1. Basic Probability Calculus

 Marginal probability distributions / example
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Figure 3: Joint probability distribution and all of its marginals [BK02, p. 75].
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Advanced AI Techniques / 1. Basic Probability Calculus

 Extreme and non-extreme probability distributions

Definition 2. By p > 0 we mean

p(x) > 0, for all x ∈
∏

dom(p)

Then p is called non-extreme.

Example 2. (
0.4 0.0
0.3 0.3

) (
0.4 0.1
0.2 0.3

)
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Advanced AI Techniques / 1. Basic Probability Calculus

 Conditional probability distributions

Definition 3. For a JPD p and a subset Y ⊆ dom(p) of its
variables with p↓Y > 0 we define

p|Y :=
p

p↓Y

as conditional probability distribution of p w.r.t. Y.

A conditional probability distribution w.r.t. Y sums to 1 for
all fixed values of Y, i.e.,

(p|Y)↓Y ≡ 1
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Advanced AI Techniques / 1. Basic Probability Calculus

 Conditional probability distributions / example

Example 3. Let p be the JPD

p :=

(
0.4 0.1
0.2 0.3

)
on two variables R (rows) and C (columns) with the do-
mains dom(R) = dom(C) = {1, 2}.

The conditional probability distribution w.r.t. C is

p|C :=

(
2/3 1/4
1/3 3/4

)
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Advanced AI Techniques / 1. Basic Probability Calculus

 Chain rule

Lemma 1 (Chain rule). Let p be a JPD on variables X1, X2, . . . , Xn

with p(X1, . . . , Xn−1) > 0. Then

p(X1, X2, . . . , Xn) = p(Xn|X1, . . . , Xn−1) · · · p(X2|X1) · p(X1)

The chain rule provides a factorization of the JPD in some of its
conditional marginals.

The factorizations stemming from the chain rule are trivial
as they have as many parameters as the original JPD:

#parameters = 2n−1 + 2n−2 + · · · + 21 + 20 = 2n − 1

(example computation for all binary variables)
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Advanced AI Techniques / 1. Basic Probability Calculus

 Bayes formula

Lemma 2 (Bayes Formula). Let p be a JPD and X ,Y be two dis-
joint sets of its variables. Let p(Y) > 0. Then

p(X |Y) =
p(Y |X ) · p(X )

p(Y)

Thomas Bayes (1701/2–1761)
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Advanced AI Techniques / 1. Basic Probability Calculus

 Independent variables

Definition 4. Two sets X ,Y of variables are called inde-
pendent, when

p(X = x,Y = y) = p(X = x) · p(Y = y)

for all x and y or equivalently

p(X = x|Y = y) = p(X = x)

for y with p(Y = y) > 0.
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Advanced AI Techniques / 1. Basic Probability Calculus

 Independent variables / example

Example 4. Let Ω be the cards in an ordinary deck and
R = true, if a card is royal,

•• T = true, if a card is a ten or a jack,

• S = true, if a card is spade.

Cards for a single color:
2 4 5 6 7 8 9 J Q AK3 10

ROYALS

S R T p(R, T |S)

Y Y Y 1/13
N 2/13

N Y 1/13
N 9/13

N Y Y 3/39 = 1/13
N 6/39 = 2/13

N Y 3/39 = 1/13
N 27/39 = 9/13

R T p(R, T )

Y Y 4/52 = 1/13
N 8/52 = 2/13

N Y 4/52 = 1/13
N 36/52 = 9/13
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Advanced AI Techniques / 1. Basic Probability Calculus

 Conditionally independent variables

Definition 5. Let X ,Y, and Z be sets of variables.

X ,Y are called conditionally independent given Z,
when for all events Z = z with p(Z = z) > 0 all pairs
of events X = x and Y = y are conditionally independend
given Z = z, i.e.

p(X = x,Y = y,Z = z) =
p(X = x,Z = z) · p(Y = y,Z = z)

p(Z = z)

for all x, y and z (with p(Z = z) > 0), or equivalently

p(X = x|Y = y,Z = z) = p(X = x|Z = z)

We write Ip(X ,Y|Z) for the statement, that X and Y are
conditionally independent given Z.

Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
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Advanced AI Techniques / 1. Basic Probability Calculus

 Conditionally independent variables

Example 5. Assume S (shape), C (color), and L (label) be three random variables
that are distributed as shown in figure 4.

We show Ip({L}, {S}|{C}), i.e., that label and shape are conditionally independent
given the color.

C S L p(L|C, S)

black square 1 2/6 = 1/3
2 4/6 = 2/3

round 1 1/3
2 2/3

white square 1 1/2
2 1/2

round 1 1/2
2 1/2

C L p(L|C)

black 1 3/9 = 1/3
2 6/9 = 2/3

white 1 2/4 = 1/2
2 2/4 = 1/2

aaQQ
.........

Figure 4: 13 objects with different shape, color, and label [Nea03, p. 8].
Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
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Advanced AI Techniques / 2. Separation in undirected graphs

 Separation in graphs (u-separation)

Definition 6. Let G := (V,E) be a graph.
Let Z ⊆ V be a subset of vertices.
We say, two vertices x, y ∈ V are u-
separated by Z in G, if every path from
x to y contains some vertex of Z (∀p ∈
G∗ : p1 = x, p|p| = y ⇒ ∃i ∈ {1, . . . , n} :
pi ∈ Z).

Let X,Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are u-separated by Z in G, if ev-
ery path from any vertex from X to any
vertex from Y is separated by Z, i.e.,
contains some vertex of Z.

We write IG(X,Y |Z) for the statement,
that X and Y are u-separated by Z in
G.
IG is called u-separation relation in G.

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 5: Example for u-separation [CGH97,
p. 179].
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Advanced AI Techniques / 2. Separation in undirected graphs

 Separation in graphs (u-separation)

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

(a) I(A, I IE) (b)D(A,IIB)

(c) I( {A, C}, {D, H} I {B, E}) (d)D({A, C), {D,H} I {E,I})

Figure 6: More examples for u-separation [CGH97, p. 179].
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Advanced AI Techniques / 2. Separation in undirected graphs

 Checking u-separation

To test, if for a given graph G = (V,E)
two given sets X,Y ⊆ V of vertices
are u-separated by a third given set
Z ⊆ V of vertices, we may use standard
breadth-first search to compute all ver-
tices that can be reached from X (see,
e.g., [OW02], [CLR90]).

1 breadth-first search(G,X) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached
7 od
8 return reached

Figure 7: Breadth-first search algorithm for enu-
merating all vertices reachable from X.

For checking u-separation we have to
tweak the algorithm

1. not to add vertices from Z to the bor-
der and

2. to stop if a vertex of Y has been
reached.

1 check-u-separation(G,X, Y, Z) :
2 border := X
3 reached := ∅
4 while border 6= ∅ do
5 reached := reached ∪ border
6 border := fanG(border) \ reached \ Z
7 if border ∩ Y 6= ∅
8 return false
9 fi

10 od
11 return true

Figure 8: Breadth-first search algorithm for
checking u-separation of X and Y by Z.
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Advanced AI Techniques / 3. Separation in directed graphs

 Chains

Definition 7. Let G := (V,E) be a di-
rected graph. We can construct an
undirected skeleton u(G) := (V, u(E))
of G by dropping the directions of the
edges:
u(E) := {{x, y} | (x, y) ∈ E or (y, x) ∈ E}

The paths on u(G) are called chains of
G:

GN := u(G)∗

i.e., a chain is a sequence of vertices
that are linked by a forward or a back-
ward edge. If we want to stress the di-
rections of the linking edges, we denote
a chain p = (p1, . . . , pn) ∈ GN by

p1 ← p2 → p3 ← · · · ← pn−1 → pn

The notions of length, subchain, inte-
rior and proper carry over from undi-
rected paths to chains.

A B

C

D

E F

G

A B

C

D

E F

G

Figure 9: Chain (A,B,E,D, F ) on directed
graph and path on undirected skeleton.
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Advanced AI Techniques / 3. Separation in directed graphs

 Blocked chains

Definition 8. Let G := (V,E) be a di-
rected graph. We call a chain

p1 → p2 ← p3

a head-to-head meeting.

Let Z ⊆ V be a subset of vertices.
Then a chain p ∈ GN is called blocked
at position i by Z, if for its subchain
(pi−1, pi, pi+1) there is{
pi ∈ Z, if not pi−1 → pi ← pi+1

pi 6∈ Z ∪ anc(Z), else

A B

C

D

E F

G

Figure 10: Chain (A,B,E,D, F ) is blocked by
Z = {B} at 2.
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Course on Advanced AI Techniques, winter term 2005 19/50

Advanced AI Techniques / 3. Separation in directed graphs

 Blocked chains / more examples

A B

C

D

E F

G

Figure 11: Chain (A,B,E,D, F ) is blocked by
Z = ∅ at 3.

A B

C

D

E F

G

Figure 12: Chain (A,B,E,D, F ) is not blocked
by Z = {E} at 3.
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Advanced AI Techniques / 3. Separation in directed graphs

 Blocked chains / rationale

The notion of blocking is choosen in
a way so that chains model "flow of
causal influence" through a causal net-
work where the states of the vertices Z
are already know.

1) Serial connection / intermediate
cause:

flu

nausea

palor

flu

nausea

palor

2) Diverging connection / common
cause:

flu

nausea fever

flu

nausea fever

3) Converging connection / common ef-
fect:

flu salmonella

nausea

palor

flu salmonella

nausea

palor

Models "discounting" [Nea03, p. 51].
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Advanced AI Techniques / 3. Separation in directed graphs

 The moral graph

Definition 9. Let G := (V,E) be a DAG.

As the moral graph of G we denote the undirected skele-
ton graph of G plus additional edges between each two
parents of a vertex, i.e. moral(G) := (V,E ′) with

E ′ := u(E) ∪ {{x, y} | ∃z ∈ V : x, y ∈ pa(z)}

A B

C

D

E F

G

A B

C

D

E F

G

Figure 14: DAG and its moral graph.Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
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Advanced AI Techniques / 3. Separation in directed graphs

 Separation in DAGs (d-separation)

Let G := (V,E) be a DAG.

Let X,Y, Z ⊆ V be three disjoint sub-
sets of vertices. We say, the vertices X
and Y are separated by Z in G, if
(i) every chain from any vertex from X

to any vertex from Y is blocked by Z
or equivalently

(ii) X and Y are u-separated by Z in the
moral graph of the ancestral hull of
X ∪ Y ∪ Z.

We write IG(X,Y |Z) for the statement,
that X and Y are separated by Z in G.

A B

C

D

E F

G

Figure 15: Are the vertices A and D separated
by C in G?
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Advanced AI Techniques / 3. Separation in directed graphs

 Separation in DAGs (d-separation) / examples

A B

C

D

E F

G

A B

C

D

E F

G

A B

C

D

E F

G

Figure 16: A and D are separated by C in G.
Wolfram Burgard, Luc de Raedt, Bernhard Nebel, Lars Schmidt-Thieme, Institute of Computer Science, University of Freiburg, Germany,
Course on Advanced AI Techniques, winter term 2005 24/50



Advanced AI Techniques / 3. Separation in directed graphs

 Separation in DAGs (d-separation) / more examples

A B

C

D

E F

G

A B

C

D

E F

G

A B

C

D

E F

G

Figure 17: A and D are not separated by {C,G} in G.
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Advanced AI Techniques / 3. Separation in directed graphs

 Checking d-separation

To test, if for a given graph G = (V,E) two given sets
X,Y ⊆ V of vertices are d-separated by a third given set
Z ⊆ V of vertices, we may

• build the moral graph of the ancestral hull and

• apply the u-separation criterion.

1 check-d-separation(G, X, Y, Z) :
2 G′ := moral(ancG(X ∪ Y ∪ Z))
3 return check-u-separation(G′, X, Y, Z)

Figure 18: Algorithm for checking d-separation via u-separation in the
moral graph.

A drawback of this algorithm is that we have to rebuild
the moral graph of the ancestral hull whenever X or Y
changes.
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Advanced AI Techniques / 3. Separation in directed graphs

 Checking d-separation

Instead of constructing a moral graph,
we can modify a breadth-first search
for chains to find all vertices not d-
separated from X by Z in G.

The breadth-first search must not hop
over head-to-head meetings with the
middle vertex not in Z nor having an de-
scendent in Z.

x y

z ∈ fanout(y)

z ∈ fanin(y)

if y∈Z∪anc(Z)

Figure 19: Restricted breadth-first search of
non-blocked chains.

1 enumerate-d-separation(G = (V, E), X, Z) :
2 borderForward := ∅
3 borderBackward := X \ Z

4 reached := ∅
5 while borderForward 6= ∅ or borderBackward 6= ∅ do
6 reached := reached ∪ (borderForward \ Z) ∪ borderBackward
7 borderForward := fanoutG(borderBackward ∪ (borderForward \ Z)) \ reached
8 borderBackward := faninG(borderBackward ∪ (borderForward ∩ (Z ∪ anc(Z)))) \ Z \ reached
9 od

10 return V \ reached

Figure 20: Algorithm for enumerating all vertices d-separated from X by Z in G via restricted
breadth-first search (see [Nea03, p. 80–86] for another formulation).
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Advanced AI Techniques / 4. Markov networks

 Complete graphs, orderings

Definition 10. An undirected graphG :=
(V,E) is called complete, if it contains
all possible edges (i.e. if E = P2(V )).

Definition 11. Let G := (V,E) be a di-
rected graph.
A bijective map

σ : {1, . . . , |V |} → V

is called an ordering of (the vertices
of) G.

We can write an ordering as enumera-
tion of V , i.e. as v1, v2, . . . , vn with V =
{v1, . . . , vn} and vi 6= vj for i 6= j.

A B

F C

E D

Figure 21: Undirected complete graph with 6

vertices.
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Advanced AI Techniques / 4. Markov networks

 Topological orderings (1/2)

Definition 12. An ordering σ =
(v1, . . . , vn) is called topological order-
ing if

(i) all parents of a vertex have smaller
numbers, i.e.
fanin(vi) ⊆ {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) all edges point from smaller to
larger numbers
(v, w) ∈ E ⇒ σ−1(v) < σ−1(w), ∀v, w ∈ V

The reverse of a topological ordering –
e.g. got by using the fanout instead of
the fanin – is called ancestral number-
ing.

In general there are several topological
orderings of a DAG.

A B

C

1 2

3

A B

C

2 1

3

A B

C

1 3

2

Figure 22: DAG with different topological order-
ings: σ1 = (A,B,C) and σ2 = (B,A,C). The
ordering σ3 = (A,C,B) is not topological.
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Advanced AI Techniques / 4. Markov networks

 Topological orderings (2/2)

Lemma 3. Let G be a directed graph. Then

G is acyclic (a DAG)⇔ G has a topological ordering

1 topological-ordering(G = (V, E)) :
2 choose v ∈ V with fanout(v) = ∅
3 σ(|V |) := v

4 σ|{1,...,|V |−1} := topological-ordering(G \ {v})
5 return σ

Figure 23: Algorithm to compute a topologcial
ordering of a DAG.

Exercise: write an algorithm for check-
ing if a given directed graph is a acyclic.
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Advanced AI Techniques / 4. Markov networks

 Complete DAGs

Definition 13. A DAG G := (V,E) is
called complete, if

(i) it has a topological ordering σ =
(v1, . . . , vn) with
fanin(vi) = {v1, . . . , vi−1}, ∀i = 1, . . . , n

or equivalently

(ii) it has exactly one topological order-
ing
or equivalently

(iii) every additional edge introduces a
cycle.

A B

F C

E D

Figure 24: Complete DAG with 6 vertices. Its
topological ordering is σ = (A,B,C,D,E, F ).
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 Graph representations of ternary relations on P(V )

Definition 14. Let V be a set and I
a ternary relation on P(V ) (i.e. I ⊆
P(V )3). In our context I is often called
an independency model.

Let G be a graph on V (undirected or
DAG).
G is called a representation of I, if

IG(X,Y |Z)⇒ I(X,Y |Z) ∀X,Y, Z ⊆ V

A representation G of I is called faith-
ful, if

IG(X,Y |Z)⇔ I(X,Y |Z) ∀X,Y, Z ⊆ V

Representations are also called in-
dependency maps of I or markov
w.r.t. I, faithful representations are also
called perfect maps of I.

A

B C

D

Figure 25: Non-faithful representation of

I := {(A,B|{C,D}), (B,C|{A,D}),
(B,A|{C,D}), (C,B|{A,D})}

A

B C

D

Figure 26: Faithful representation of I. Which
I?
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 Faithful representations

In G also holds
IG(B, {A,C}|D), IG(B,A|D), IG(B,C|D), . . .

so G is not a representation of
I := {(A,B|{C,D}), (B,C|{A,D}),

(B,A|{C,D}), (C,B|{A,D})}
at all. It is a representation of

A

B C

D

Figure 27: Faithful representation of J .

J := {(A,B|{C,D}), (B,C|{A,D}), (B, {A,C}|D), (B,A|D), (B,C|D),

(B,A|{C,D}), (C,B|{A,D}), ({A,C}, B|D), (A,B|D), (C,B|D)}

and as all independency statements of
J hold in G, it is faithful.
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 Trivial representations

For a complete undirected graph or a
complete DAG G := (V,E) there is

IG ≡ false,
i.e. there are no triples X,Y, Z ⊆ V
with IG(X,Y |Z). Therefore G repre-
sents any independency model I on V
and is called trivial representation.

There are independency models without
faithful representation.

A

B C

D

A

B C

D

Figure 28: Independency model

I := {(A,B|{C,D})}

without faithful representation.
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 Minimal representations

Definition 15. A representationG of I is called minimal, if
none of its subgraphs omitting an edge is a representation
of I.

A

B C

D

A

B C

D

Figure 29: Different minimal undirected representations of the inde-
pendency model

I := {(A,B|{C,D}), (A,C|{B,D}),
(B,A|{C,D}), (C,A|{B,D})}
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 Minimal representations

Lemma 4 (uniqueness of minimal undirected representation).
An independency model I has exactly one minimal undirected rep-
resentation, if and only if it is

(i) symmetric: I(X,Y |Z)⇒ I(Y,X|Z).

(ii) decomposable: I(X,Y |Z)⇒ I(X,Y ′|Z) for any Y ′ ⊆ Y

(iii) intersectable: I(X,Y |Y ′ ∪ Z) and I(X,Y ′|Y ∪ Z) ⇒ I(X, Y ∪
Y ′|Z)

Then this representation is G = (V,E) with

E := {{x, y} ∈ P2(V ) |not I(x, y|V \ {x, y}}
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 Minimal representations (2/2)

Example 6.

I := {(A,B|{C,D}), (A,C|{B,D}), (A, {B,C}|D), (A,B|D), (A,C|D),

(B,A|{C,D}), (C,A|{B,D}), ({B,C}, A|D), (B,A|D), (C,A|D)}

is symmetric, decomposable and intersectable.

Its unique minimal undirected represen-
tation is

A

B C

D

If a faithful representation exists, obvi-
ously it is the unique minimal represen-
tation, and thus can be constructed by
the rule in lemma 4.
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 Representation of conditional independency

Definition 16. We say, a graph repre-
sents a JPD p, if it represents the con-
ditional independency relation Ip of p.

General JPDs may have several mini-
mal undirected representations (as they
may violate the intersection property).

Non-extreme JPDs have a unique mini-
mal undirected representation.

To compute this representation we have
to check Ip(X,Y |V \ {X,Y }) for all pairs
of variables X,Y ∈ V , i.e.

p · p↓V \{X,Y } = p↓V \{X} · p↓V \{Y }

Then the minimal representation is the
complete graph on V omitting the edges
{X,Y } for that Ip(X,Y |V \ {X,Y })
holds.
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 Representation of conditional independency

Example 7. Let p be the JPD on V :=
{X,Y, Z} given by:

Z X Y p(X,Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X,Y |Z) and
Ip(Y,X|Z).

Its marginals are:

Z X p(X,Z)
0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y, Z)
0 0 0.06
0 1 0.14
1 0 0.32
1 1 0.48

X Y p(X,Y )
0 0 0.12
0 1 0.2
1 0 0.26
1 1 0.42

X p(X)
0 0.32
1 0.68

Y p(Y )
0 0.38
1 0.62

Z p(Z)
0 0.2
1 0.8
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 Representation of conditional independency

Example 7 (cont.).
Z X Y p(X,Y, Z)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.036
0 1 1 0.084
1 0 0 0.096
1 0 1 0.144
1 1 0 0.224
1 1 1 0.336

Checking p · p↓V \{X,Y } = p↓V \{X} ·
p↓V \{Y } one finds that the only indepen-
dency relations of p are Ip(X,Y |Z) and
Ip(Y,X|Z).

Thus, the graph
X

Y Z

represents p, as its independency
model is IG := {(X,Y |Z), (Y,X|Z)}.

As for p only Ip(X,Y |Z) and Ip(Y,X|Z)
hold, G is a faithful representation.
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 Markov networks

Definition 17. A pair (G, (ψC)C∈CG) con-
sisting of

(i) an undirected graph G on a set of
variables V and

(ii) a set of potentials

ψC :
∏
X∈C

dom(X)→ R+
0 , C ∈ CG

on the cliques1) of G (called clique
potentials)

is called a markov network.

1) on the product of the domains of the
variables of each clique.

Thus, a markov network encodes

(i) a joint probability distribution factor-
ized as

p = (
∏
C∈CG

ψC)|∅

and

(ii) conditional independency state-
ments

IG(X,Y |Z)⇒ Ip(X,Y |Z)

G represents p, but not necessarily faith-
fully.

Under some regularity conditions (not
covered here), ψCi can be choosen as
conditional probabilities p↓Ci|Si.
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 Markov networks / examples

X

Y Z

Z X p(X,Z)

0 0 0.08
0 1 0.12
1 0 0.24
1 1 0.56

Z Y p(Y |Z)

0 0 0.3
0 1 0.7
1 0 0.4
1 1 0.6

Figure 30: Example for a markov network.
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 DAG-representations

Lemma 5 (criterion for DAG-representation). Let p be a joint probability distribu-
tion of the variables V and G be a graph on the vertices V . Then:

G represents p⇔ v and nondesc(v) are conditionally independent
given pa(v) for all v ∈ V , i.e.,

Ip({v}, nondesc(v)| pa(v)), ∀v ∈ V

J

A

I

B

C H

D

E F

GK L
Figure 31: Parents of a vertex (orange).
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 Example for a not faithfully DAG-representable independency model

Probability distributions may have no faithful DAG-
representation.

Example 8. The independency model

I := {I(x, y|z), I(y, x|z), I(x, y|w), I(y, x|w)}

does not have a faithful DAG-representation. [CGH97,
p. 239]

Exercise: compute all minimal DAG-representations of I
using lemma 6 and check if they are faithful.
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 Minimal DAG-representations

Lemma 6 (construction and uniqueness of minimal DAG-representation, [VP90]).
Let I be an independence model of a JPD p. Then:

(i) A minimal DAG-representation can be constructed as follows: Choose an ar-
bitrary ordering σ := (v1, . . . , vn) of V . Choose a minimal set πi ⊆ {v1, . . . , vi−1}
of σ-precursors of vi with

I(vi, {v1, . . . , vi−1} \ πi|πi)

Then G := (V,E) with

E := {(w, vi) | i = 1, . . . , n, w ∈ πi}

is a minimal DAG-representation of p.

(ii) If p also is non-extreme, then the minimal representation G is unique up to
ordering σ.
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 Minimal DAG-representations / example

I := {(A,C|B), (C,A|B)},,-~~---

VTV
(!i}(A,B, C) (b) (A, C, B) (e) (B, A, C)

(B,C,A)
(d)(C,A, B) (e) (C, B, A)

---n~~ ~ ,.., ~"... 1 rI . -' T
. cl . h h cl cl Ymode

.-.~o 're>rt.PlI-maDS assoclate Wlt t e epen ene .
Figure 32: Minimal DAG-representations of I [CGH97, p. 240].
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 Minimal representations / conclusion

Representations always exist (e.g., trivial).

Minimal representations always exist
(e.g., start with trivial and drop edges successively).

Markov network (undirected) Bayesian network (directed)
minimal faithful minimal faithful

general JPD may not be
unique

may not
exist

may not be
unique

may not
exist

non-extreme JPD unique may not
exist

unique up
to ordering

may not
exist
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 Bayesian Network

Definition 18. A pair (G := (V,E), (pv)v∈V )
consisting of

(i) a directed graph G on a set of vari-
ables V and

(ii) a set of conditional probability dis-
tributions
pX : dom(X)×

∏
Y ∈pa(X)

dom(Y )→ R+
0

at the vertices X ∈ V conditioned
on its parents (called (conditional)
vertex probability distributions)

is called a bayesian network.
Thus, a bayesian network encodes

(i) a joint probability distribution factor-
ized as

p =
∏
X∈V

p(X| pa(X))

and

(ii) conditional independency state-
ments

IG(X,Y |Z)⇒ Ip(X,Y |Z)

G represents p, but not necessarily faith-
fully.

A B

C

D

E F

G

p(A)

p(B|A, C)

p(C)

p(D|C)

p(E|B, D) p(F |D, E)

p(G|E)

Figure 33: Example for a bayesian network.
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 Types of probabilistic networks

probabilistic network

rep. discrete JPD rep. continuous JPD rep. mixed JPD

markov network bayesian network gaussian network dirichlet network ...

Figure 34: Types of probabilistic networks.
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