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Motivation
• So far, all games consisted of just one 

simultaneous move by all players
• Often, there is a whole sequence of moves and 

player can react to the moves of the other 
players

• Examples:
– board games
– card games
– negotiations
– interaction in a market



Example: Entry Game
• An incumbent faces the possibility of entry by a

challenger. The challenger may enter (in) or not 
enter (out). If it enters, the incumbent may either 
give in or fight.

• The payoffs are
– challenger: 1, incumbent: 2 if challenger does not 

enter
– challenger: 2, incumbent: 1 if challenger enters and 

incumbent gives in
– challenger: 0, incumbent: 0 if challenger enters and 

incumbent fights

(similar to chicken – but here we have a sequence of moves!) 



Formalization: Histories

• The possible developments of a game can 
be described by a game tree or a 
mechanism to construct a game tree

• Equivalently, we can use the set of paths 
starting at the root: all potential histories of 
moves 
– potentially infinitely many (infinite branching)
– potentially infinitely long



Extensive Games with 
Perfect Information

An extensive games with perfect information consists of
– a non-empty, finite set of players N = {1, …, n}
– a set H (histories) of sequences such that

• 〈〉 ∈ H 
• H is prefix-closed
• if for an infinite sequence 〈ai〉i∈ N every prefix of this sequence is in 

H, then the infinite sequence is also in H
• sequences that are not a proper prefix of another strategy are called 

terminal histories and are denoted by Z. The elements in the 
sequences are called actions.

– a player function P: H\Z → N, 
– for each player i a payoff function ui: Z → R

• A game is finite if H is finite
• A game as a finite horizon, if there exists a finite upper 

bound for the length of histories



Entry Game – Formally 

• players N = {1,2} (1: challenger, 2: incumbent)
• histories H = {〈〉, 〈out〉, 〈in〉, 〈in, fight〉, 〈in, give_in〉}
• terminal histories: Z = {〈out〉, in, fight〉, 〈in, give_in〉}
• player function:

– P(〈〉) = 1
– P(〈in〉) = 2

• payoff function
– u1(〈out〉)=1, u2(〈out〉)=2
– u1(〈in, fight〉)=0, u2(〈in, fight〉)=0
– u1(〈in,give_in〉)=2, u2(〈in,give_in〉)=1



Strategies
• The number of possible 

actions after history h is 
denoted by A(h).

• A strategy for player i is a 
function si that maps 
each history h with P(h) = 
i to an element of A(h).

• Notation: Write strategy 
as a sequence of actions 
as they are to be chosen 
at each point when 
visiting the nodes in the 
game tree in breadth-first 
manner. 

• Possible strategies for 
player 1:
– AE, AF, BE, BF

• for player 2:
– C,D

• Note: Also decisions for 
histories that cannot 
happen given earlier 
decisions!



Outcomes
• The outcome O(s) of a 

strategy profile s is the 
terminal history that 
results from applying the 
strategies successively to 
the histories starting with 
the empty one. 

• What is the outcome for 
the following strategy 
profiles?

• O(AF,C) = 
• O(AF,D) = 
• O(BF,C) = 



Nash Equilibria in Extensive 
Games with Perfect Information 

• A strategy profile s* is a Nash Equilibrium in an 
extensive game with perfect information if for all 
players i and all strategies si of player i:

ui(O(s*
-i,s*

i)) ≥ ui(O(s*
-i,si))

• Equivalently, we could define the strategic form 
of an extensive game and then use the existing 
notion of Nash equilibrium for strategic games.



The Entry Game - again
• Nash equilibra?

– In, Give in
– Out, Fight

• But why should the 
challenger take the 
“threat” seriously that the 
incumbent starts a fight?

• Once the challenger has 
played “in”, there is no 
point for the incumbent to 
reply with “fight”. So 
“fight” can be regarded as 
an empty threat

Give in Fight

In 2,1 0,0

Out 1,2 1,2

• Apparently, the Nash 
equilibrium out, fight is not 
a real “steady state” – we 
have ignored the 
sequential nature of the 
game



Sub-games

• Let G=(N,H,P,(ui)) be an extensive game 
with perfect information. For any non-
terminal history h, the sub-game G(h)
following history h is the following game: 
G’=(N,H’,P’,(ui’)) such that:
– H’ is the set of histories such that for all h’:

(h,h’)∈ H
– P’(h’) = P((h,h’))
– ui’(h’) = ui((h,h’)) 

How many sub-games are there?



Applying Strategies to Sub-games

• If we have a strategy profile s* for the game G
and h is a history in G, then s*|h is the strategy 
profile after history h, i.e., it is a strategy profile 
for G(h) derived from s* by considering only the 
histories following h.

• For example, let ((out), (fight)) be a strategy 
profile for the entry game. Then ((),(fight)) is the 
strategy profile for the sub-game after player 1 
played “in”.



Sub-game Perfect Equilibria

• A sub-game perfect equilibrium (SPE) of 
an extensive game with perfect 
information is a strategy profile s* such that 
for all histories h, the strategies in s*|h are 
optimal for all players.

• Note: ((out), (fight)) is not a SPE!
• Note: A SPE could also be defined as a 

strategy profile that induces a NE in every 
sub-game 



Example: Distribution Game
• Two objects of the same 

kind shall be distributed 
to two players. Player 1 
suggest a distribution, 
player 2 can accept (+) or 
reject (-). If she accepts, 
the objects are distributed 
as suggested by player 1. 
Otherwise nobody gets 
anything.

• NEs? 
• SPEs?

(2,0) (1,1) (0,2)

(2,0) (0,0) (1,1) (0,0) (0,2) (0,0)

+ + +- - -

1

2 2 2

• ((2,0),+xx) are NEs
• ((2,0),--x) are NEs
• ((1,1),-+x) are NEs
• ((0,1),--+) is a NE
Only
• ((2,0),+++) is a SPE
• ((1,1),-++) is a SPE



Existence of SPEs

• Infinite games may not have a SPE
– Consider the 1-player game with actions [0,1) 

and payoff u1(a) = a.
• If a game does not have a finite horizon, 

then it may not possess an SPE:
– Consider the 1-player game with infinite 

histories such that the infinite histories get a 
payoff of 0 and all finite prefixes extended by 
a termination action get a payoff that is 
proportional to their length.



Finite Games Always Have a SPE

• Length of a sub-game = length of longest history
• Use backward induction

– Find the optimal play for all sub-games of length 1
– Then find the optimal play for all sub-games of length 

2 (by using the above results)
– ….
– until length n = length of game

game has an SPE
• SPE is not necessarily unique – agent my be 

indifferent about some outcomes
• All SPEs can be found this way!



Strategies and Plans of Action
• Strategies contain 

decisions for unreachable 
situations!

• Why should player 1 
worry about the choice 
after A,C if he will play B?

• Can be thought of as
– what player 2 beliefs about 

player 1
– what will happen if by 

mistake player 1 chooses A
– Player 1 actually would 

play



The Distribution Game - again

• Now it is easy to find 
all SPEs

• Compute optimal 
actions for player 2

• Based on the results, 
consider actions of 
player 1

(2,0) (1,1) (0,2)

(2,0) (0,0) (1,1) (0,0) (0,2) (0,0)

+ + +- - -

1

2 2 2



Another Example: 
The Chain Store Game

• If we play the entry game for k periods and 
add up the payoff from each period, what 
will be the SPEs?

• By backward induction, the only SPE is 
the one, where in every period (in, give_in) 
is selected

• However, for the incumbent, it could be 
better to play sometimes fight in order to 
“build up a reputation” of being aggressive.



Yet Another Example:
The Centipede Game

• The players move alternately
• Each prefers to stop in his move over the other player 

stopping in the next move
• However, if it is not stopped in these two periods, this is 

even better
• What is the SPE?

1 1 12 2 2C C C C C

S S S S S S

1,0 0,2 3,1 2,4 5,3 4,6

7,5



Relationship to Minimax

• Similarities to Minimax
– solving the game by searching the game tree bottom-

up, choosing the optimal move at each node and 
propagating values upwards

• Differences
– More than two players are possible in the backward-

induction case
– Not just one number, but an entire payoff profile

• So, is Minimax just a special case?



Possible Extensions
• One could add random moves to extensive 

games. Then there is a special player which 
chooses its actions randomly
– SPEs still exist and can be found by backward 

induction. However, now the expected utility has to be 
optimized

• One could add simultaneous moves, that the 
players can sometimes make moves in parallel
– SPEs might not exist anymore (simple argument!)

• One could add “imperfect information”: The 
players are not always informed about the 
moves other players have made. 



Conclusions
• Extensive games model games in which more than one 

simultaneous  move is allowed
• The notion of Nash equilibrium has to be refined in order 

to exclude implausible equilibria – those with empty 
threats

• Sub-game perfect equlibria capture this notion
• In finite games, SPEs always exist
• All SPEs can be found by using backward induction
• Backward induction can be seen as a generalization of 

the Minimax algorithm
• A number of plausible extenions are possible: 

simulataneous moves, random moves, imperfect 
information
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