An Introduction to Game Theory Part IV:

Games with Imperfect Information Bernhard Nebel

Motivation

- So far, we assumed that all players have perfect knowledge about the preferences (the payoff function) of the other players
- Often unrealistic
- For example, in auctions people are not sure about the valuations of the others
- what to do in a sealed bid auction?

Example

- Let's assume the BoS game, where player 1 is not sure, whether player 2 wants to meet her to avoid her,
- She assumes a probability of 0.5 for each case.
- Player 2 knows the preferences of player 1

Example (cont.)

Prob. 0.5

	Bach	Stra- vinsky
Bach	2,0	0,2
Stra- vinsky	0,1	1,0

Prob. 0.5

What is the Payoff?

- Player 1 views player 2 as being one of two possible types
- Each of these types may make an independent decision
- So, the friendly player 2 may choose B and the unfriendly one S : (B, S)
- Expected payoff when player 1 plays B :

$$
0.5 \times 2+0.5 \times 0=1
$$

Expected Payoffs \& Nash Equilibrium

	(B, B)	(B, S)	(S, B)	(S, S)
B	$2(1,0)$	$1(1,2)$	$1(0,0)$	$0(0,2)$
S	$0(0,1)$	$0.5(0,0)$	$0.5(2,1)$	$1(2,0)$

- A Nash equilibrium in pure strategies is a triple ($\mathrm{x},(\mathrm{y}, \mathrm{z}$)) of actions such that:
- the action x of player 1 is optimal given the actions (y, z) of both types of player 2 and the belief about the state
- the actions y and z of each type of player 2 are optimal given the action x of player 1

Nash Equilibria?

	(B, B)	(B, S)	(S, B)	(S, S)
B	$2(1,0)$	$1(1,2)$	$1(0,0)$	$0(0,2)$
S	$0(0,1)$	$0.5(0,0)$	$0.5(2,1)$	$1(2,0)$

- Is there a Nash equilibrium?
- Yes: B, (B,S)
- Is there a NE where player 1 plays S ?
- No

Formalization: States and Signals

- There are states, which completely determine the preferences / payoff functions
- In our example: friendly and unfriendly
- Before the game starts, each player receives a signal that tells her something about the state
- In our example:
- Player 2 receives a states, which type she is
- Player 1 gets no information about the state and has only her beliefs about probabilities.
- Although, the actions for non-realized types of player 2 are irrelevant for player 2, they are necessary for player 1 (and therefore also for player 2) when deliberating about possible action profiles and their payoffs

General Bayesian Games

- A Bayesian game consists of
- a set of players $N=\{1, \ldots, n\}$
- a set of states $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$
- and for each player i
- a set of actions A_{i}
- a set of signals T_{i} and a signal function $\tau_{i}: \Omega \rightarrow T_{i}$
- for each signal a belief about the possible states (a probability distribution over the states associated with the signal) $\operatorname{Pr}\left(\omega \mid t_{i}\right)$
- a payoff function $u_{i}(a, \omega)$ over pairs of action profiles and states, where the expected value for a_{i} represents the preferences:
$\sum_{\omega \in \Omega} \operatorname{Pr}\left(\omega \mid t_{i}\right) u_{i}\left(\left(a_{i} ; \hat{a}_{-i}(\omega)\right), \omega\right)$
with $\hat{a}_{i}(\omega)$ denoting the choice by i when she has received the signal $\tau_{i}(\omega)$

Example: BoS with Uncertainty

- Players: \{1, 2\}
- States: \{friendly, unfriendly\}
- Actions: $\{B, S\}$
- Signals: $T=\{a, b, c\}$
$-\tau_{1}\left(\omega_{i}\right)=a$ for $i=1,2$
$-\tau_{2}\left(\right.$ friendly) $=b, \tau_{2}($ unfriendly) $=c$,
- Beliefs:
$-\operatorname{Pr}($ friendly $\mid a)=0.5, \operatorname{Pr}($ unfriendly $\mid a)=0.5$
$-\operatorname{Pr}($ friendly $\mid b)=1, \operatorname{Pr}($ friendly $\mid b)=0$
$-\operatorname{Pr}($ friendly $\mid c)=0, \operatorname{Pr}($ friendly $\mid c)=1$
- Payoffs: As in the left and right tables on the slide

Example: Information can hurt

- In single-person games, knowledge can never hurt, but here it can!
- Two players, both don't know which state und consider both states ω_{1} and ω_{2} as equally probable (0.5)
- Note: Preferences of player 1 are known, while the preferences of player 2 are unknown (to both!)

$\omega 1$	L	M	R
T	3,2	3,0	3,3
B	6,6	0,0	0,9

$\omega 2$	L	M	R
T	3,2	3,3	3,0
B	6,6	0,9	0,0

Example (cont.)

- Player 2's unique best response is: L
- For this reason, player 1 will play B
- Payoff: 6,6 - only NE, even when mixed strategies!
- When player 2 can distinguish the states, R and M are dominating actions
- (T,(R,M)) is the unique NE

$\omega 2$	L	M	R
T	3,2	3,3	3,0
B	6,6	0,9	0,0

Incentives and Uncertain Knowledge May Lead to Suboptimal Solutions

- $\tau_{1}(\alpha)=a, \tau_{1}(\beta)=b, \tau_{1}(\mathrm{Y})=b$
$-\operatorname{Pr}(\mathrm{a} \mid \mathrm{a})=1$
$-\operatorname{Pr}(\beta \mid b)=0.75, \operatorname{Pr}(\mathrm{y} \mid \mathrm{b})=0.25$
- $\tau_{2}(\alpha)=c, \tau_{2}(\beta)=c, \tau_{2}(\mathrm{Y})=d$
$-\operatorname{Pr}(\alpha \mid \mathrm{c})=0.75, \operatorname{Pr}(\beta \mid \mathrm{c})=0.25$
$-\operatorname{Pr}(\mathrm{y} \mid \mathrm{d})=1$
- In state $\mathrm{\gamma}$, there are 2 NEs
- In state γ, player 2 knows her preferences, but player 1 does not know that!
- The incentive for player 1 to play R in state α "infects" the game

$\beta \& y$	L	R
L	2,2	0,0
R	0,0	1,1

α	L	R
L	2,2	0,0
R	3,0	1,1

The Infection

- Player 1 must play R when receiving signal a (= state α)!
- Player 2 will therefore never play L when receiving c ($=\alpha$ or β)
- For this reason, player 1 will never play L when receiving $b(=\beta$ or γ)
- Therefore player 2 will also play R when receiving $d(=\gamma)$
- Therefore the unique NE is $((R, R),(R, R))$!

α	L	R
L	2,2	0,0
R	3,0	1,1

$\beta \& Y$	L	R
L	2,2	0,0
R	0,0	1,1
$\begin{aligned} & \tau 1(\alpha)=a, \tau 1(\beta)=b, \tau 1(\mathrm{y})=b \\ & \operatorname{Pr}(\alpha \mid a)=1 \\ & \operatorname{Pr}(\beta \mid \mathrm{b})=0.75, \operatorname{Pr}(\mathrm{y} \mid \mathrm{b})=0.25 \end{aligned}$		

$\tau 2(\alpha)=c, \tau 2(\beta)=c, \tau 2(\gamma)=d$
$\operatorname{Pr}(\alpha \mid \mathrm{c})=0.75, \operatorname{Pr}(\beta \mid \mathrm{c})=0.25$
$\operatorname{Pr}(\mathrm{y} \mid \mathrm{d})=1$

Auctions with Imperfect Information

- Players: $\mathrm{N}=\{1, \ldots, \mathrm{n}\}$
- States: the set of all profiles of valuations $\left(v_{1}, \ldots, v_{n}\right)$, where $0 \leq v_{i} \leq v_{\text {max }}$
- Actions: Set of possible bids
- Signals: The set of the player i's valuation $\tau_{i}\left(v_{1}, \ldots, v_{n}\right)=v_{i}$
- Beliefs: $F(v)$ is the probability that the other bidder values of the object is at most v, i.e.,
$F\left(v_{1}\right) x \ldots x F\left(v_{i-1}\right) x F\left(v_{i+1}\right) x \ldots x F\left(v_{n}\right)$ is the probability, that all other players j value the object at most v_{j}
- Payoff: $u_{i}\left(b,\left(v_{1}, \ldots, v_{n}\right)\right)=\left(v_{i}-P(b)\right) / m$ if $b_{j} \leq b$ for all $i \neq j$ and $b_{j}=b$ for m players and $P(b)$ being the price function:
- $P(b)$ the highest bid $=$ first price auction
- $P(b)$ the second highest bid $=$ second price auction

Private and Common Values

- If the valuations are private, that is each one cares only about the his one appreciation (e.g., in art),
- valuations are completely independent
- one does not gain information when people submit public bids
- In an auction with common valuations, which means that the players share the value system but may be unsure about the real value (antiques, technical devices, exploration rights),
- valuations are not independent
- one might gain information from other players bids
- Here we consider private values

Second Price Sealed Bid Auction

- $P(b)$ is what the second highest bid was
- As in the perfect information case (see exercise):
- It is a weakly dominating action to bid ones own valuation v_{i}
- There exist other, non-efficient, equlibria

First Price Sealed Bid Auction

- A bid of v_{i} weakly dominates any bid higher than V_{i}
- A bid of v_{i} does not weakly dominate a bid lower than v_{i}
- A bid lower than v_{i} weakly dominates v_{i}
- NE probably at a point below v_{i}
- General analysis is quite involved
- Simplifications:
- only 2 players
$-v_{\max }=1$
- uniform distribution of valuations, i.e., $F(v)=v$

First Price Sealed Bid Auction (2)

- Let $B_{i}(v)$ the bid of type v for player i.
- Claim: Under the mentioned conditions, the game has a NE for $B_{i}(v)=v / 2$.
- Assume that player 2 bids this way, then as far as player 1 is concerned, player 2's bids are uniformly distributed between 0 and 0.5 .
- Thus, if player 1 bids $b_{1}>0.5$, she wins. Otherwise, the probability that she wins is $\mathrm{F}\left(2 \mathrm{~b}_{1}\right)$
- The payoff is
$>\mathrm{v}_{1}-\mathrm{b}_{1}$ if $\mathrm{b}_{1}>0.5$
$>2 \mathrm{~b}_{1}\left(\mathrm{v}_{1}-\mathrm{b}_{1}\right)=2 \mathrm{~b}_{1} \mathrm{v}_{1}-2 \mathrm{~b}_{1}^{2}$ if $0 \leq \mathrm{b}_{1} \leq 0.5$

First Price Sealed Bid Auction (3)

- In other words, $0.5 v_{1}$ is the best response to $B_{2}(v)=v / 2$ for player 1.
- Since the players are symmetric, this also holds for player 2
- Hence, this is a NE
- In general, for m players, the NE is $B i(v)=v / m$ for m players
- Can also be shown for general distributions

Conclusion

- If the players are not fully informed about there own and others utilities, we have imperfect information
- The technical tool to model this situation are Bayesian games
- New concepts are states, signals, beliefs and expected utilities over the believed distributions over states
- Being informed can hurt!
- Auctions are more complicated in the imperfect information case, but can still be solved.

