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Motivation

• So far, we assumed that all players have 
perfect knowledge about the preferences 
(the payoff function) of the other players

• Often unrealistic
• For example, in auctions people are not 

sure about the valuations of the others
– what to do in a sealed bid auction?



Example

• Let’s assume the BoS game, where player 
1 is not sure, whether player 2 wants to 
meet her to avoid her, 

• She assumes a probability of 0.5 for each 
case.

• Player 2 knows the preferences of player 1



Example (cont.)
Bach Stra-

vinsky

Bach
2,1 0,0

Stra-
vinsky 0,0 1,2

Bach Stra-
vinsky

Bach
2,0 0,2

Stra-
vinsky 0,1 1,0

Prob. 0.5 Prob. 0.5



What is the Payoff?

• Player 1 views player 2 as being one of 
two possible types

• Each of these types may make an 
independent decision

• So, the friendly player 2 may choose B 
and the unfriendly one S: (B,S)

• Expected payoff when player 1 plays B:
0.5 x 2 + 0.5 x 0 = 1 



Expected Payoffs & 
Nash Equilibrium

(B,B) (B,S) (S,B) (S,S)

B 2 (1,0) 1 (1,2) 1 (0,0) 0 (0,2)

S 0 (0,1) 0.5 (0,0) 0.5 (2,1) 1 (2,0)

• A Nash equilibrium in pure strategies is a triple (x,(y,z)) 
of actions such that:
– the action x of player 1 is optimal given the actions (y,z) of both 

types of player 2 and the belief about the state
– the actions y and z of each type of player 2 are optimal given the 

action x of player 1



Nash Equilibria?

(B,B) (B,S) (S,B) (S,S)

B 2 (1,0) 1 (1,2) 1 (0,0) 0 (0,2)

S 0 (0,1) 0.5 (0,0) 0.5 (2,1) 1 (2,0)

• Is there a Nash equilibrium?
– Yes: B, (B,S)

• Is there a NE where player 1 plays S?
– No



Formalization:
States and Signals

• There are states, which completely determine the 
preferences / payoff functions
– In our example: friendly and unfriendly

• Before the game starts, each player receives a signal
that tells her something about the state
– In our example: 

• Player 2 receives a states, which type she is 
• Player 1 gets no information about the state and has only her beliefs 

about probabilities.

• Although, the actions for non-realized types of player 2 
are irrelevant for player 2, they are necessary for player 
1 (and therefore also for player 2) when deliberating 
about possible action profiles and their payoffs 



General Bayesian Games
• A Bayesian game consists of

– a set of players N = {1, …, n}
– a set of states Ω = {ω1, …, ωk}

• and for each player i
– a set of actions Ai
– a set of signals Ti and a signal function τi: Ω→ Ti
– for each signal a belief about the possible states (a 

probability distribution over the states associated with 
the signal) Pr(ω | ti)

– a payoff function ui(a,ω) over pairs of action profiles 
and states, where the expected value for ai represents 
the preferences: 
∑ω∈Ω Pr(ω | ti) ui((ai,â-i(ω)),ω)
with âi(ω) denoting the choice by i when she has 
received the signal τi(ω)



Example: BoS with Uncertainty
• Players: {1, 2}
• States: {friendly, unfriendly}
• Actions: {B, S}
• Signals: T={a,b,c}

– τ1(ωi) = a for i=1,2
– τ2(friendly) = b, τ2(unfriendly) = c, 

• Beliefs: 
– Pr( friendly | a) = 0.5, Pr( unfriendly | a) = 0.5
– Pr( friendly | b) = 1, Pr( friendly | b) = 0
– Pr( friendly | c) = 0, Pr( friendly | c) = 1

• Payoffs: As in the left and right tables on the 
slide



Example: Information can hurt
• In single-person games, 

knowledge can never 
hurt, but here it can!

• Two players, both don’t 
know which state und 
consider both states ω1 
andω2 as equally 
probable (0.5)

• Note: Preferences of 
player 1 are known, while 
the preferences of player 
2 are unknown (to both!)

ω1 L M R
T 3,2 3,0 3,3
B 6,6 0,0 0,9

ω2 L M R

T 3,2 3,3 3,0

B 6,6 0,9 0,0



Example (cont.)
ω1 L M R
T 3,2 3,0 3,3
B 6,6 0,0 0,9

• Player 2’s unique best 
response is: L

• For this reason, player 1 
will play B

• Payoff: 6,6 – only NE, 
even when mixed 
strategies!

• When player 2 can 
distinguish the states, R 
and M are dominating 
actions 

• (T,(R,M)) is the unique 
NE

ω2 L M R

T 3,2 3,3 3,0

B 6,6 0,9 0,0



Incentives and Uncertain Knowledge 
May Lead to Suboptimal Solutions

α L R
L 2,2 0,0
R 3,0 1,1

• τ1(α) = a, τ1(β) = b, τ1(γ) = b
– Pr(α|a) = 1
– Pr(β|b) = 0.75, Pr(γ |b) = 0.25

• τ2(α) = c, τ2(β) = c, τ2(γ) = d
– Pr(α|c) = 0.75, Pr(β|c) = 0.25
– Pr(γ|d) = 1

• In state γ, there are 2 NEs
• In state γ, player 2 knows her 

preferences, but player 1 does 
not know that!

• The incentive for player 1 to play 
R in state α „infects“ the game
and only (R,R),(R,R) is an NE 

β & γ L R
L 2,2 0,0
R 0,0 1,1



The Infection
α L R
L 2,2 0,0
R 3,0 1,1

• Player 1 must play R 
when receiving signal a 
(= state α)!

• Player 2 will therefore 
never play L when 
receiving c (= α or β)

• For this reason, player 1 
will never play L when
receiving b (= β or γ)

• Therefore player 2 will 
also play R when 
receiving d (= γ)

• Therefore the unique NE 
is ((R,R),(R,R))!

β & γ L R
L 2,2 0,0
R 0,0 1,1

τ1(α) = a, τ1(β) = b, τ1(γ) = b
Pr(α|a) = 1
Pr(β|b) = 0.75, Pr(γ |b) = 0.25

τ2(α) = c, τ2(β) = c, τ2(γ) = d
Pr(α|c) = 0.75, Pr(β|c) = 0.25
Pr(γ|d) = 1



Auctions with Imperfect Information

• Players: N = {1, …, n}
• States: the set of all profiles of valuations (v1,…,vn),

where 0 ≤ vi ≤ vmax
• Actions: Set of possible bids
• Signals: The set of the player i’s valuation τi(v1,…,vn) = vi
• Beliefs: F(v) is the probability that the other bidder values 

of the object is at most v, i.e.,                        
F(v1)x…xF(vi-1)xF(vi+1)x…xF(vn) is the probability, that all 
other players j value the object at most vj

• Payoff: ui(b,(v1,…,vn)) = (vi – P(b))/m if bj ≤ b for all i ≠ j 
and bj = b for m players and P(b) being the price 
function:
– P(b) the highest bid = first price auction
– P(b) the second highest bid = second price auction



Private and Common Values
• If the valuations are private, that is each one 

cares only about the his one appreciation (e.g., 
in art),
– valuations are completely independent
– one does not gain information when people submit 

public bids
• In an auction with common valuations, which 

means that the players share the value system 
but may be unsure about the real value 
(antiques, technical devices, exploration rights), 
– valuations are not independent
– one might gain information from other players bids

• Here we consider private values



Second Price Sealed Bid Auction

• P(b) is what the second highest bid was
• As in the perfect information case (see 

exercise):
– It is a weakly dominating action to bid ones 

own valuation vi 

– There exist other, non-efficient, equlibria



First Price Sealed Bid Auction
• A bid of vi weakly dominates any bid higher than 

vi
• A bid of vi does not weakly dominate a bid lower 

than vi
• A bid lower than vi weakly dominates vi
• NE probably at a point below vi
• General analysis is quite involved
• Simplifications:

– only 2 players
– vmax = 1
– uniform distribution of valuations, i.e., F(v) = v



First Price Sealed Bid Auction (2)

• Let Bi(v) the bid of type v for player i.
• Claim: Under the mentioned conditions, the 

game has a NE for Bi(v) = v/2.
• Assume that player 2 bids this way, then as far 

as player 1 is concerned, player 2’s bids are 
uniformly distributed between 0 and 0.5.

• Thus, if player 1 bids b1 > 0.5, she wins. 
Otherwise, the probability that she wins is F(2b1)

• The payoff is
v1 – b1 if b1 > 0.5
2b1 (v1 – b1) = 2b1v1 – 2b1

2 if 0 ≤ b1 ≤ 0.5



First Price Sealed Bid Auction (3)

• In other words, 0.5v1 is 
the best response to 
B2(v)=v/2 for player 1.

• Since the players are 
symmetric, this also holds 
for player 2

• Hence, this is a NE
• In general, for m players, 

the NE is Bi(v)=v/m for m 
players

• Can also be shown for 
general distributions
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Conclusion
• If the players are not fully informed about there 

own and others utilities, we have imperfect 
information

• The technical tool to model this situation are 
Bayesian games

• New concepts are states, signals, beliefs and 
expected utilities over the believed distributions 
over states 

• Being informed can hurt!
• Auctions are more complicated in the imperfect 

information case, but can still be solved.
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