An Introduction to Game Theory Part II: Mixed and Correlated Strategies Bernhard Nebel

Randomizing Actions ...

- Since there does not seem to exist a rational decision, it might be best to randomize strategies.
- Play Head with probability p and Tail with probability 1-p
- Switch to expected utilities

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

Some Notation

- Let $G = (N, (A_i), (u_i))$ be a strategic game
- Then $\Delta(A_i)$ shall be the set of probability distributions over A_i the set of mixed strategies $\alpha_i \in \Delta(A_i)$
- $\alpha_i(a_i)$ is the probability that a_i will be chosen in the mixed strategy α_i
- A profile $\alpha = (\alpha_i)$ of mixed strategies induces a probability distribution on A: $p(a) = \prod_i \alpha_i(a_i)$
- The expected utility is $U_i(\alpha) = \sum_{a \in A} p(a) u_i(a)$

Example of a Mixed Strategy

• Let
$$-\alpha_1(H) = 2/3, \ \alpha_1(T) = 1/3$$

$$-\alpha_2(H) = 1/3, \ \alpha_2(T) = 2/3$$

Then

$$- p(H,H) = 2/9$$

– ...

$$-U_{1}(\alpha_{1}, \alpha_{2}) = ?$$

$$- U_2(\alpha_1, \alpha_2) = ?$$

	Tibau	ı alı
Head	1,-1	-1,1
Tail	-1,1	1,-1

Head

Tail

Mixed Extensions

- The mixed extension of the strategic game $(N, (A_i), (u_i))$ is the strategic game $(N, (A_i), (U_i))$.
- The mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium of its mixed extension.
- Note that the Nash equilibria in pure strategies (as studied in the last part) are just a special case of mixed strategy equilibria.

Nash's Theorem

Theorem. Every finite strategic game has a mixed strategy Nash equilibrium.

- Note that it is essential that the game is finite
- So, there exists always a solution
- What is the computational complexity?
- This is an open problem! Not known to be NP-hard, but there is no known polynomial time algorithm
- Identifying a NE with a value larger than a particular value is NP-hard

The Support

• We call all pure actions a_i that are chosen with non-zero probability by α_i the support of the mixed strategy α_i

Lemma. Given a finite strategic game, α^* is a mixed strategy equilibrium if and only if for every player *i* every pure strategy in the support of α_i^* is a best response to α_{-i}^*

•

Proving the Support Lemma

- \Rightarrow Assume that α^* is a Nash equilibrium with a_i being in the support of α_i^* but not being a best response to α_{-i}^* .
- This means, by reassigning the probability of a_i to the other actions in the support, one can get a higher payoff for player i.
- This implies α* is not a Nash equilibrium → contradiction
- (Proving the contraposition): Assume that α* is not a Nash equilibrium.
- This means that there exists α_i that is a better response than α_i^* to α_{-i}^* .
- Then because of how U_j is computed, there must be an action a_j' in the support of α_j' that is a better response (higher utility) to α_{-j}* than a pure action a_j* in the support of α_j*.
- This implies that there are actions in the support of α_i^* that are not best responses to α_{i}^* .

Using the Support Lemma

- The Support Lemma can be used to compute all types of Nash equilibria in 2-person 2x2 action games.
- There are 4 potential Nash equilibria in pure strategies
 Easy to check
- ➤ There are another 4 potential Nash equilibrium types with a 1-support (pure) against 2-support mixed strategies
 - Exists only if the corresponding pure strategy profiles are already Nash equilibria (follows from Support Lemma)
- ➤ There exists one other potential Nash equilibrium type with a 2-support against a 2-support mixed strategies
 - Here we can use the Support Lemma to compute an NE (if there exists one)

A Mixed Nash Equilibrium for Matching Pennies

	Head	Tail
Head		
	1,-1	-1,1
Tail		
	-1,1	1,-1

- There is clearly no NE in pure strategies
- Lets try whether there is a NE
 α* in mixed strategies
- Then the H action by player 1 should have the same utility as the T action when played against the mixed strategy α₋₁*

•
$$U_{1}((1,0), (\alpha_{2}(H), \alpha_{2}(T))) = U_{1}((0,1), (\alpha_{2}(H), \alpha_{2}(T)))$$

- $U_1((1,0), (\alpha_2(H), \alpha_2(T))) = 1\alpha_2(H) + -1\alpha_2(T)$
- $U_1((0,1), (\alpha_2(H), \alpha_2(T))) = -1\alpha_2(H)+1\alpha_2(T)$
- $a_2(H) a_2(T) = -a_2(H) + a_2(T)$
- $2\alpha_2(H) = 2\alpha_2(T)$
- $\alpha_2(H) = \alpha_2(T)$
- Because of $\alpha_2(H) + \alpha_2(T) = 1$:
- $\rightarrow a_2(H) = a_2(T) = 1/2$
- Similarly for player 1!

$$U_1(\alpha^*) = 0$$

Mixed NE for BoS

	Bach	Stra- vinsky
Bach	2,1	0,0
Stra- vinsky	0,0	1,2

- There are obviously 2 NEs in pure strategies
- Is there also a strictly mixed NE?
- If so, again B and S played by player 1 should lead to the same payoff.

•
$$U_1((1,0), (\alpha_2(B), \alpha_2(S))) = U_1((0,1), (\alpha_2(B), \alpha_2(S)))$$

•
$$U_1((1,0), (\alpha_2(B), \alpha_2(S))) = 2\alpha_2(B) + 0\alpha_2(S)$$

•
$$U_1((0,1), (\alpha_2(B), \alpha_2(S))) = 0$$

 $0\alpha_2(B)+1\alpha_2(S)$

•
$$2a_2(B) = 1a_2(S)$$

• Because of
$$\alpha_2(B) + \alpha_2(S) = 1$$
:

$$> a_2(B) = 1/3$$

$$> a_2(S) = 2/3$$

Similarly for player 1!

❖
$$U_1(\alpha^*) = 2/3$$

Couldn't we Help the BoS Players?

- BoS have two pure strategy Nash equilibria
 - but which should they play?
- They can play a mixed strategy, but this is worse than any pure strategy
- The solution is to talk about, where to go
- Use an external random signal to decide where to go
- Correlated Nash equilibria
- > In the BoS case, we get a payoff of 1.5

Conclusion

- Although Nash equilibria do not always exist, one can give a guarantee, when we randomize finite games:
- ➤ For every finite strategic game, there exists a Nash equilibrium in mixed strategies
- Actions in the support of mixed strategies in a NE are always best answers to the NE profile, and therefore have the same payoff → Support Lemma
- The Support Lemma can be used to determine mixed strategy NEs for 2-person games with 2x2 action sets
- In general, there is no poly-time algorithm known for computing a Nash equilibrium (and it is open whether this problem is NP-hard)
- In addition to pure and mixed NEs, there exists the notion of correlated NE, where you coordinate your action using an external randomized signal