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Linear Regression
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Basic Setting

Linear regression allows to study relationships between
independent and dependent variables.
We will focus on simple linear regression, which models the
relationship between one independent and one dependent
variable.

The independent variable is called the predictor.
The dependent variable is called the response.
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The Running Example

Imagine we want to model the relationship between a social
robot’s politeness and its perceived likability. We assume
politeness to be configurable by the robot’s administrator.
To study the relationship, a data sample has been
gathered, which looks like this:

politeness <- c(10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 60)
likability <- c(3, 8, 9, 10, 7, 9, 9, 11, 11, 12, 10, 13)

Questions we might want to answer:
What is the mean politeness of the robot?
What is the likeability score of the robot with politeness 45?
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The Mean as Simplest Model

The Model
Model: Yi = Y + εi
Residuals: εi = Yi −Y
Sum of Squared Error: SSE = ∑

n
i ε2

i
Mean Squared Error: MSE = SSE/(n−1)
Residual Standard Error: S =

√
MSE (this is just s)

Running example
Y = 9.33. The model will claim that the average robot’s
perceived likability is 9.33 regardless of its politeness.
Similarly, if we use this model to answer the question about
the likability of the robot with politeness 45, it will answer
9.33.

⇒See lecture12.Rmd for an example
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The Simple Linear Model I

The Model
Model: Yi = b0 +b1Xi + εi , with Intercept: b0 and Slope: b1.
Residuals: εi = Yi −b0−b1Xi
Sum of Squared Error: SSE = ∑

n
i ε2

i
Mean Squared Error: MSE = SSE/(n−2)

Two variables get estimated (the intercept and the slope),
thus two degrees of freedom.

Residual Standard Error: S =
√
MSE

Running example
Yi = 5.533+0.11Xi . The model will claim that the average
robot’s perceived likability with politeness 45 will be
5.533+0.11 ·45 = 10.42. Similarly, if we use this model to
answer the question about the likability of the robot with
politeness 45, it will answer 10.42.

⇒See lecture12.Rmd for an example
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The Simple Linear Model II

In a nutshell, given a linear model Yi = b0 +b1Xi + εi :
Ŷi = b0 +b1Xi represents the mean response at position Xi ,
the error term εi is assumed to be normally distributed with
mean 0 and equal variances for all levels of X .
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Least Squares Fitting I

Goal: Determination of the best fitting line
Notation

Yi : ith observed response
Xi : ith predictor value
Ŷi : ith predicted response (aka the fitted value)

The equation for the best fitting line is:

Ŷi = b0 +b1Xi

Coefficients b0 and b1 are to be found such that they
minimize:

Q =
n

∑
i

(Yi− Ŷi)2
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Least Squares Fitting II

Coefficients b0 and b1 are to be found such that they
minimize:

Q =
n

∑
i

(Yi− Ŷi)2 =
n

∑
i

(Yi− (b0 +b1Xi))2

Derivations of Q with respect to b0 and b1 are taken, set to
0, and solved for b0,b1, resulting in:

b0 = Y −b1X

b1 = ∑
n
i (Xi−X )(Yi−Y )

∑
n
i (Xi−X )2
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Intercept and Slope

Intercept: b0 = Y −b1X

Slope: b1 = ∑
n
i (Xi−X )(Yi−Y )

∑
n
i (Xi−X )2

Compare the coefficient b1 to Pearson’s r: r = Cov(X ,Y )
sXsY

b1 = Cov(X ,Y )
sX sX

= r sYsX
Thus, if X ,Y are standardized variables (mean zero,
standard deviation 1), then: b1 = r, b0 = 0, Ŷi = rXi .
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On b0 and b1

b0: This coefficient is very often meaningless, especially
when 0 is out of X ’s range. See lecture12.Rmd for an
example.
b1: It’s the increase of the mean response for every one unit
increase in X .

⇒See lecture12.Rmd
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Coefficient of Determination R2

Basic Terminology

Regression sum of squares: SSR = ∑
n
i (Ŷi−Y )2

Quantifies how far the estimated slope regression line, Ŷ , is
from the horizontal “no relationship” line, Y .

Sum of squared error: SSE = ∑
n
i (Yi− Ŷi)2

Quantifies how much the data points Yi vary around the
estimates regression line Ŷ .

Total sum of squares: SSTO = SSR +SSE = ∑
n
i (Yi−Y )2

Quantifies how much the data points Yi vary around their
mean Y .

Thus, one can say that the regression line absorbs some of
the variance (i.e., SSR) from the total variance SSTO and
leaves SSE unexplained.
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Coefficient of Determination R2

Properties

R2 value is the regression sum of squares divided by the
total sum of squares:

R2 =
SSR
SSTO

= 1− SSE
SSTO

=
SSR

SSR +SSE

R2 is a number between 0 and 1.
If R2 = 1, i.e., SSE = 0: The predictor X explains all of the
variation in Y .
If R2 = 0, i.e., SSR = 0, i.e., Ŷ = Y : The predictor X explains
none of the variation in Y.
R2 ·100 percent of the variation in Y is explained by X.

Lindner, Wächter, Nebel – Social Robotics 13 / 24



Intermediate Summary

Yi = b0 +b1Xi is the model for the mean response Yi on a
given Xi .
Coefficients b0 and b1 can be computed using the
equations from slide 9.
R2 can be used to assess how much of the total variation in
the data can be explained by the predictor.
Next: How can we test that the contribution of the predictor
is statistically significant? That is, is b1 statistically different
from 0?
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The t Statistics for the Slope

Test for hypothesis H1 : β1 6= 0, H0 : β1 = 0
If there is a linear relationship in the population with slope
β1, then the b1s are normally distributed with mean β1. The
variance can be estimated by σ2 = S√

∑
n
i (Xi−X )2

with residual
standard error S.

t =
b1−β

S√
∑

n
i (Xi−X )2

=
b1−0

S√
∑

n
i (Xi−X )2

=
b1√

∑
n
i (Yi−Ŷ )2

(n−2)√
∑

n
i (Xi−X )2

=
b1
sb1
∼ t(n−2)

⇒See slide lecture12.Rmd for an example.
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Relation to Two-Sample t-Test
Motivation

In the beginning we said that the Ŷi are the mean response
for each Xi , and that b1 represents the increase of this
response if X is increased by one unit.
So, what if X is just binary (0, 1)?
Then, Ŷi = b0 is the mean response for X = 0, and
Ŷi = b0 +b1 is the mean response of X = 1.
Using a t-Test on b1, we can test the significance of this
increase.
Isn’t this just a Two-Sample t-Test?
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Relation to Two-Sample t-Test
Derivation I

b1 = ∑
n
i (Xi−X )(Yi−Y )

∑
n
i (Xi−X )2 , b0 = Y −b1X

We encode the two groups with a binary variable X with
values 0 and 1. Hence, X = 1

2 . We further assume that both
the groups have equal number of samples, thus Y = Y0+Y1

2 .

b1 = ∑
n
i (Xi− 1

2 )(Yi−Y )
n
4

=
1
2 ∑

n/2
i (Y1,i−Y )− 1

2 ∑
n/2
i (Y0,i−Y )

n
4

=

2∑
n/2
i (Y1,i−Y )−∑

n/2
i (Y0,i−Y )

n = ∑
n/2
i (2Y1,i−Y0−Y1)−∑

n/2
i (2Y0,i−Y0−Y1)

n =
∑

n/2
i (Y1,i−Y0)−∑

n/2
i (Y0,i−Y1)

n = Y1−Y0
2 + ∑

n/2
i (Y1,i−Y0,i )

n = 2Y1−Y0
2 =

Y1−Y0

b0 = Y0+Y1
2 − b1

2 = Y0

Hence, Ŷi = Y0 + (Y1−Y0)Xi
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Relation to Two-Sample t-Test
Derivation II

Reconsider t = b1√
∑
n
i (Yi−Ŷ )2

(n−2)√
∑
n
i (Xi−X )2

∼ t(n−2)

t =
√n

2
b1√

2∑
n
i (Yi−Ŷ )2

(n−2)

=
√n

2
Y1−Y0√
2∑

n
i (Yi−Ŷ )2

(n−2)

=
√n

2
Y1−Y0√

2
(n−1)s2Y0

+(n−1)s2Y1
(n−2)

=

√n
2

Y1−Y0√
s2Y0+s2Y1

∼ t(n−2)

This is exactly the term from our t-Test lecture! (The only
syntactical difference is that we wrote N = n/2)
In case of a binary predictor, running a Two-Sample Paired
t-Test is just the same as running a t-Test on the slope of a
linear regression model.
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The F Statistics for the Model I

The R summary of a linear regression model also outputs
the F statistics along with a p value. Intuitively, this test
assesses if the regression model makes a significant
contribution to explain the data (rather than testing
individual contributions of the coefficients).
However, in case of only one predictor, this is just the same
as testing H1 : β1 6= 0,H0 : β1 = 0. And therefore, we expect
the same result as with the t-Test on the same hypothesis.

Lindner, Wächter, Nebel – Social Robotics 19 / 24



The F Statistics for the Model II

Remember the ANOVA for testing differences between
several means: The idea was to compare the variance of
the means to the total variance.
For regression, something similar is done: The Regression
sum of squares (SSR) is compared to the mean Residual
error (SSE/(n-2)).

Regression sum of squares: SSR = ∑
n
i (Ŷi −Y )2

Sum of squared error: SSE = ∑
n
i (Yi − Ŷi )2

Total sum of squares: SSTO = SSR +SSE = ∑
n
i (Yi −Y )2

F = SSR
SSE
n−2

, with df1 = 1,df2 = n−2.
F becomes bigger as the regression line becomes steeper.
Hence, if the groups are appropriately modeled, the F test
for H0 : β1 = 0 is equal to the F test for H0 : µ0 = ... = µn, for
which we used the ANOVA. In fact, the aov() procedure in R
just calls lm().
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Report

To report the result from a simple linear regression, you can
write:

A simple linear regression was calculated to predict [de-
pendent variable] based on [independent variable]. A si-
gnificant regression equation was found (F([df1], [df2])
= [F value], p = [p value]), with an R2 of [R-Squared va-
lue].

You
may add:

[Dependent variable] is equal to [intercept] + [b1] (inde-
pendent variable) [dependent variable measure] when
[independent variable] is measured in [unit of measu-
re].
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Correlation vs. Regression
When to report what?

If one of the variables can be clearly identified as the
response of another variable, then run a linear regression
and report the t-test or F-test results for H0 : β1 = 0.

In case of the simple linear regression, both these tests are
equivalent.
For multi-regression, the F-test tests if one slope is
significant, and the t-tests test the significance of the
particular slopes.

If it is not obvious which of the variables is the response
(i.e., you do not want to assume causality), then run a
correlation and report a t-test for H0 : ρ = 0.
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This closes the mathy part of the lecture.
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Sketches
Intentionally left blank :-)
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