Social Robotics

Albert-Ludwigs-Universität Freiburg

Felix Lindner, Laura Wächter, Bernhard Nebel
SoSe 2019

Non-parametric Tests

Overview

- Wilcoxon signed-rank test
- Wilcoxon rank-sum test (aka Mann-Whitney test)
- Kruskal-Wallis test
- Ranks are natural numbers starting with 1, which get assigned to scores sorted in increasing order.
- Ranks can be assigned to any data which is at least ordinal.
- Ranks are robust against outliers (because ranks are used instead of the actual data).

Example

- Data: 0, 7, 3; Rank: 1, 3, 2
- Data: -100, 99, 98; Rank: 1, 3, 2
- Data: d, a, b; Rank: 3, 1, 2
- In case of ties, the average rank is assigned to the whole group of scores that constitutes the tie.

Example

- Data: 1, 6, 4, 4, 2, 2, 2
- Rank: 1, 7, 5.5, 5.5, 3, 3, 3

Wilcoxon Signed-Rank Test: Motivation

- Likert scales are a popular means of measurement.
- Likert scales in most cases have no interval-scale reading.

Example

Five participants are asked to rate their belief in the possibility that humans will one day be the slaves of robots before and after they have watched a Sci-Fi movie. As a measurement instrument, a 3-Point Likert-Scale "never ever!" (1), "maybe" (2), "yes, sure!" (3) was used.

- Before: 1, 2, 2, 3, 3; After: 2, 3, 3, 3, 1
- Difference: -1, -1, -1, 0, +2
- Differences without 0: $-1,-1,-1,+2$
- Ranks: 2, 2, 2, 4

Wilcoxon Signed-Rank Test: Example Continued

Example

Five participants are asked to rate their belief in the possibility that humans will one day be the slaves of robots before and after they have watched a Sci-Fi movie. As a measurement instrument, a 3-Point Likert-Scale "never ever!" (1), "maybe" (2), "yes, sure!" (3) was used.

- Before: 1, 2, 2, 3, 3; After: 2, 3, 3, 3, 1
- Difference: -1, -1, -1, 0, +2; Without 0: -1, -1, -1, +2
- Ranks: 2, 2, 2, 4
- Let $V=\sum_{i}^{n} Z_{i} R_{i}$ be the sum of the positive ranks ($Z_{i}=1$ if difference i is positive, and $Z_{i}=0$ else).
- In the example $V=4$. Well, so what?

Towards the Null Hypothesis

- Imagine two paired samples and consider their rank differences.
- Consider $V=\sum_{i}^{n} Z_{i} R_{i}$. What could happen?

1 Case $V=0$: All the rank differences are negative.
2 Case $V=\sum_{i}^{n} R_{i}=\frac{n(n+1)}{2}$: All rank differences are positive.
3 Else: V ranges between 0 and $\frac{n(n+1)}{2}$.

- If the groups do not differ $\left(H_{0}\right)$, then 50% of the differences should be below 0 and 50% above. This is like saying that the median of the difference is 0 . And in that case, V should be close to $\frac{\frac{n(n+1)}{2}}{2}=\frac{n(n+1)}{4}$.
- Hence, we will test $H_{0}: M d n=0$ against its alternatives, and we will do that by using V.

Wilcoxon Signed-Rank Test

- The nice thing about V is that (for $n>25$) its distribution is well approximated by a normal distribution $\mathcal{N}\left(\mu_{V}, \sigma_{V}\right)$ with
- $\mu_{V}=\frac{n(n+1)}{4}$
- $\sigma_{V}=\sqrt{\frac{n(n+1)(2 n+1)}{24}}$

Wilcoxon Signed-Rank Test: Mean

\square The nice thing about V is that (for $n>25$) its distribution under H_{0} is well approximated by a normal distribution $\mathcal{N}\left(\mu_{V}, \sigma_{V}\right)$ with

- $\mu_{V}=\frac{n(n+1)}{4}$
- $\sigma_{V}=\sqrt{\frac{n(n+1)(2 n+1)}{24}}$
- Proof (Mean): We already came to this conclusion earlier on Slide 8.

Wilcoxon Signed-Rank Test: Mean

- The nice thing about V is that (for $n>25$) its distribution is well approximated by a normal distribution $\mathcal{N}\left(\mu_{V}, \sigma_{V}\right)$ with
- $\mu_{V}=\frac{n(n+1)}{4}$
- $\sigma_{V}=\sqrt{\frac{n(n+1)(2 n+1)}{24}}$

■ Proof (Variance)

- First, we define $V^{\prime}=\sum_{i}^{n} V_{i}^{\prime}$ with
$V_{i}^{\prime}= \begin{cases}0 & \text { with probability } 0.5 \\ i & \text { with probability } 0.5\end{cases}$
- (V^{\prime} has the same distribution as V, because, for every rank, it either belongs to the sum of V or not with probability 0.5 .)
- $\operatorname{Var}(V)=\operatorname{Var}\left(V^{\prime}\right)=\sum_{i}^{n} \operatorname{Var}\left(V_{i}^{\prime}\right)$ (independence of $\left.V_{i}^{\prime}\right)$.
- $\operatorname{Var}\left(V_{i}^{\prime}\right)=E\left(V_{i}^{\prime 2}\right)-E\left(V_{i}^{\prime}\right)^{2}=\left(0^{2} \frac{1}{2}+i^{2} \frac{1}{2}\right)-\left(\frac{1}{2} i\right)^{2}=\frac{i^{2}}{4}$
- $\operatorname{Var}(V)=\sum_{i}^{n} \operatorname{Var}\left(V_{i}\right)=\sum_{i}^{n} \frac{i^{2}}{4}=\frac{n(n+1)(2 n+1)}{24}$.

Wilcoxon Signed-Rank Test: Example Again

Example

Five participants are asked to rate their belief in the possibility that humans will one day be the slaves of robots before and after they have watched a Sci-Fi movie. As a measurement instrument, a 3-Point Likert-Scale "never ever!" (1), "maybe" (2), "yes, sure!" (3) was used.

- Before: 1, 2, 2, 3, 3; After: 2, 3, 3, 3, 1
- Difference: $-1,-1,-1,0,+2$; Without $0:-1,-1,-1,+2$
- Ranks: 2, 2, 2, 4
- $V=4, \mu_{v}=4(4+1) / 4=5, \sigma_{V}=\sqrt{4(4+1)(2 \times 4+1) / 24}$
$\square z=\frac{v-\mu_{v}}{\sigma_{V}}=(4-5) / 2.74=-0.365$
- $p=P(z \leq-0.365)+1-P(z \leq 0.365)=0.715$

Comparison to Paired t-Test

Example: t-Test

Five participants are asked to rate their belief in the possibility that humans will one day be the slaves of robots before and after they have watched a Sci-Fi movie. As a measurement instrument, a 3-Point Likert-Scale "never ever!" (1), "maybe" (2), "yes, sure!" (3) was used.

- Before: 1, 2, 2, 3, 3; After: 2, 3, 3, 3, 1
- Difference: -1, -1, -1, 0, +2
- $\bar{D}=0.20, s_{D}=1.30, n=5$
- $t=\sqrt{5} \times 0.20 / 1.30=0.344, d f=4$
- $p=0.748$

Wilcoxon Rank-Sum Test: Motivation

Example

Five participants are asked to rate their belief in the possibility that humans will one day be the slaves of robots after they have watched the Sci-Fi movie M1, and five participants rate their belief after watching Sci-Fi movie M2. As a measurement instrument, a 3-Point Likert-Scale "never ever!" (1), "maybe" (2), "yes, sure!" (3) was used.

- M1: 1, 1, 2, 2, 2; M2: 2, 3, 3, 3, 2
- H_{0} : The two groups are equal. I.e., they stem from a distribution of equal median.
- Reject H_{0} or not?

Wilcoxon Rank-Sum Test: General Setting

- First, all scores are ranked together.
- First group's rank sum: $R_{1}=\sum_{i=1}^{n_{1}} r_{1, i}$
- Second group's rank sum: $R_{2}=\sum_{i=1}^{n_{2}} r_{2, i}$
- First group's W: $W_{1}=R_{1}-\sum_{i=1}^{n_{1}} i=R_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}$
\square Second group's $\mathrm{W}: W_{2}=R_{2}-\sum_{i=1}^{n_{2}} i=R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}$
$-W_{1}+W_{2}=R_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}+R_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}=n_{1} n_{2}$
- Note: The Wilcoxon Rank-Sum Test is also known as Mann-Whitney U-Test, and W is also called U. There are various ways of defining W (resp. U), which are all equal! R uses the statistics W the way shown above.

Wilcoxon Rank-Sum Test: Distribution of W

- For larger samples $\left(n_{1}>10, n_{2}>10\right), W \sim \mathcal{N}\left(\mu_{W}, \sigma_{W}\right)$:
- $\mu_{W}=\frac{n_{1} n_{2}}{2}$
$-\sigma_{W}=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}$
- Also see simulation in lecture10. Rmd.
- Again, we can calculate z-values to decide whether or not W is extreme, i.e., whether or not to reject H_{0}.

Wilcoxon Rank-Sum Test: Example Continued

Example

- M1: 1, 1, 2, 2, 2
- M2: 2, 3, 3, 3, 2
- All Scores: 1, 1, 2, 2, 2, 2, 3, 3, 3, 2
- Ranks: 1.5, 1.5, 5, 5, 5, 5, 9, 9, 9, 5
- $R_{1}=18, W=18-15=3$
$z=\frac{\frac{3-(5 \times 5)}{2}}{\sqrt{\frac{5 \times 5(5+5+1)}{12}}}=-2.298$
- $p=P(z \leq-2.298)+1-P(z \leq 2.298)=0.022$

Wilcoxon Rank-Sum Test vs. t-Test

Example

- M1: 1, 1, 2, 2, 2
- M2: 2, 3, 3, 3, 2
- $\bar{X}_{1}=1.6, \bar{X}_{2}=2.6, s_{1}^{2}=0.3, s_{2}^{2}=0.3, n=5, d f=8$
- $t=\sqrt{n} \times \frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{s_{1}^{2}+s_{2}^{2}}}=\sqrt{5} \times \frac{1.6-2.6}{\sqrt{0.3+0.3}}=-2.887$
- $p=P(t \leq-2.887)+1-P(t \leq 2.887)=0.020$
- For a simulation comparing Wilcoxon and t -Test see lecture11.Rmd.

Kruskal-Wallis Test: Setting

- Also for rank-based methods, there is an analog to ANOVA that can cope with more than two groups: Kruskal-Wallis Test. As for ANOVA, H_{0} reads "There is no difference between the groups".
- First, the scores of all groups are ranked together (like for Wilcoxon Rank-Sum Test).
- The test statistics is called H :
$\square H=(N-1) \frac{\sum_{i}^{p} n_{i}\left(\bar{r}_{i}-\bar{r}\right)^{2}}{\sum_{i}^{p} \sum_{j}^{n_{i}}\left(r_{i j}-\bar{r}\right)^{2}}$, with $N=\sum_{i}^{p} n_{i}, \bar{r}_{i}=\frac{\sum_{j}^{n_{i}} r_{i j}}{n_{i}}, \bar{r}=\frac{N+1}{2}$
- H can be simplified to $H=\frac{12}{N(N+1)} \sum_{i}^{p} n_{i} \bar{r}_{i}^{2}-3(N+1)$
- $H \sim \chi_{p-1}^{2}$, with p being the number of groups.

Kruskal-Wallis Test: Example

Example

- M1: 1, 1, 2, 2, 2; Ranks: 2.5, 2.5, 8.5, 8.5, 8.5
- M2: 2, 3, 3, 3, 2; Ranks: 8.5, 14, 14, 14, 8.5
- M3: 1, 2, 2, 1, 2; Ranks: 2.5, 8.5, 8.5, 2.5, 8.5
- $\bar{r}_{1}=6.1, \bar{r}_{2}=11.8, \bar{r}_{3}=6.1, N=15, \bar{r}=(15+1) / 2=8$
- $H=\frac{12}{15 \times 16} \times 5(37.21+139.24+37.21)-3 \times 16=5.41$
- $p=1-P\left(\chi^{2} \leq 5.41\right)=0.067$
- R will report different values, see next slide to learn why.

Ties call for Corrections

If there are long ties (i.e., a lot of scores getting the same rank), the variance of the statistics become smaller and thus some corrections have to be applied.

- The V-statistics's standard deviation becomes:
- $\sigma_{V}=\sqrt{\frac{n(n+1)(2 n+1)}{24}-\sum_{i}^{k} \frac{t_{i}^{3}-t_{i}}{48}}$ (cf., slide 9)
- The W-statistics's standard deviation becomes:
- $\sigma_{W}=\sqrt{\frac{n_{1} n_{2}}{12}\left(\left(n_{1}+n_{2}+1\right)-\sum_{i}^{k} \frac{t_{i}^{3}-t_{i}}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)}\right)}$ (cf., slide 16)
- And the H -statistics can be corrected by dividing H by the term corr $=1-\frac{\sum_{i}^{k}\left(t^{3}-t_{i}\right)}{N^{3}-N}$
- In the example: corr $=1-\frac{\left(4^{3}-4\right)+\left(8^{3}-8\right)+\left(3^{3}-3\right)}{\left(15^{3}-15\right)}$
- The corrected H value then is $H_{\text {corr }}=6.56$
- Because all this is rather tedious, you are allowed to skip these corrections in your assignments (also in the exam).

Current State of our Toolkit

- Categorical Scale
- χ^{2}-statistics $\left(\chi^{2}\right.$-distributed)
- Interval Scale
- Variance known: z-statistics (normally distributed)
- Variance unknown (but equal): t-statistics (Student's t distribution), F-statistics (F-distributed)
- Ordinal Scale
- W-, V-statistics (both normally distributed), H-statistics (χ^{2}-distributed)

What comes next

- We started out defining four types of hypotheses

1 Directional difference hypotheses
2 Undirectional difference hypotheses
3 Directional relationship hypotheses
4 Undirectional relationship hypotheses
■ We can so far only deal with (1) and (2). This is going to be fixed during the remaining lectures. Stay tuned!

Sketches

Intentionally left blank :-)

