Game Theory 12. Mechanism Design

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2019

- Preference relations \prec contain no information about "by how much" one candidate is preferred.
- Idea: Use money to measure this.
- Use money also for transfers between players "for compensation".

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Setting

- Set of alternatives A.
- Set of *n* players *N*.
- Valuation functions $v_i : A \to \mathbb{R}$ such that $v_i(a)$ denotes the value player *i* assigns to alternative *a*.
- Payment functions specifying amount $p_i \in \mathbb{R}$ that player *i* pays.
- Utility of player *i*: $u_i(a) = v_i(a) p_i$.

DRG

2

Incentive

Mechanisms

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Second Price Auctions

Second Price Auctions

Second price auctions:

- There are n players bidding for a single item.
- Player i's private valuations of item: w_i.
- Desired outcome: Player with highest private valuation wins bid.
- Players should reveal their valuations truthfully.
- Winner *i* pays price p^* and has utility $w_i p^*$.
- Non-winners pay nothing and have utility 0.

Second Price

> Incentive Compatible Mechanisms

Second Price Auctions

Formally:

$$A = N$$

$$v_i(a) = \begin{cases} w_i & \text{if } a = i \\ 0 & \text{else} \end{cases}$$

- What about payments? Say player *i* wins:
 - $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$.
 - $p^* = w_i$ (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \varepsilon$.
 - better: $p^* = \max_{i \neq i} w_i$ (winner pays second highest bid).

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

Vickrey Auction

Definition (Vickrey Auction)

The winner of the Vickrey Auction (aka second price auction) is the player *i* with the highest declared value w_i . He has to pay the second highest declared bid $p^* = \max_{i \neq i} w_i$.

Proposition (Vickrey)

Let *i* be one of the players and w_i his valuation for the item, u_i his utility if he truthfully declares w_i as his valuation of the item, and u'_i his utility if he falsely declares w'_i as his valuation of the item. Then $u_i \ge u'_i$.

Proof

See

http://en.wikipedia.org/wiki/Vickrey_auction.

UNI FREIBUR

Second Price Auctions

Incentive Compatible Mechanisms

Vickrey Auction

Definition (Vickrey Auction)

The winner of the Vickrey Auction (aka second price auction) is the player *i* with the highest declared value w_i . He has to pay the second highest declared bid $p^* = \max_{i \neq i} w_i$.

Proposition (Vickrey)

Let *i* be one of the players and w_i his valuation for the item, u_i his utility if he truthfully declares w_i as his valuation of the item, and u'_i his utility if he falsely declares w'_i as his valuation of the item. Then $u_i \ge u'_i$.

Proof See http://en.wikipedia.org/wiki/Vickrey_auction.

DRD

Second Price Auctions

Incentive Compatible Mechanisms

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Incentive Compatible Mechanisms

Incentive Compatible Mechanisms

- Idea: Generalization of Vickrey auctions.
- Preferences modeled as functions $v_i : A \to \mathbb{R}$.
- Let V_i be the space of all such functions for player *i*.
- Unlike for social choice functions: Not only decide about chosen alternative, but also about payments.

Incentive Compatible Mechanisms

Mechanisms

Definition (Mechanism)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ consists of

- **a social choice function** $f: V_1 \times \cdots \times V_n \to A$ and
- for each player *i*, a payment function
 - $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}.$

Definition (Incentive Compatibility)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called incentive compatible if for each player $i = 1, \ldots, n$, for all preferences $v_1 \in V_1, \ldots, v_n \in V_n$ and for each preference $v'_i \in V_i$,

 $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

Second Price

BUR

Incentive Compatible Mechanisms

Mechanisms

Definition (Mechanism)

A mechanism $\langle f, p_1, \dots, p_n \rangle$ consists of

- **a social choice function** $f: V_1 \times \cdots \times V_n \to A$ and
- for each player *i*, a payment function
 - $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}.$

Definition (Incentive Compatibility)

A mechanism $\langle f, p_1, \ldots, p_n \rangle$ is called incentive compatible if for each player $i = 1, \ldots, n$, for all preferences $v_1 \in V_1, \ldots, v_n \in V_n$ and for each preference $v'_i \in V_i$,

 $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

Second Price

Incentive Compatible Mechanisms

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Clarke Pivot Rule Examples

- If ⟨*f*,*p*₁,...,*p_n*⟩ is incentive compatible, truthfully declaring ones preference is a dominant strategy.
- The Vickrey-Clarke-Groves mechanism is an incentive compatible mechanism that maximizes "social welfare", i.e., the sum over all individual utilities ∑_{i=1}ⁿ v_i(a).
- Idea: Reflect other players' utilities in payment functions, align all players' incentives with goal of maximizing social welfare.

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Definition (Vickrey-Clarke-Groves mechanism)

A mechanism $\langle f, p_1, \dots, p_n \rangle$ is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

- 1 $f(v_1,...,v_n) \in \operatorname{argmax}_{a \in A} \sum_{i=1}^n v_i(a)$ for all $v_1,...,v_n$ and
- 2 there are functions h_1, \ldots, h_n with $h_i : V_{-i} \to \mathbb{R}$ such that $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$ for all $i = 1, \ldots, n$ and v_1, \ldots, v_n .

Note: $h_i(v_{-i})$ independent of player *i*'s declared preference \Rightarrow $h_i(v_{-i}) = c$ constant from player *i*'s perspective.

Utility of player $i = v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{i=1}^n v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c.$

Second Price

Ž

Auctions Incentive

Compatible Mechanisms

VCG Mechanisms

Definition (Vickrey-Clarke-Groves mechanism)

A mechanism $\langle f, p_1, \dots, p_n \rangle$ is called a Vickrey-Clarke-Groves mechanism (VCG mechanism) if

- 1 $f(v_1,...,v_n) \in \operatorname{argmax}_{a \in A} \sum_{i=1}^n v_i(a)$ for all $v_1,...,v_n$ and
- 2 there are functions h_1, \ldots, h_n with $h_i : V_{-i} \to \mathbb{R}$ such that $p_i(v_1, \ldots, v_n) = h_i(v_{-i}) \sum_{j \neq i} v_j(f(v_1, \ldots, v_n))$ for all $i = 1, \ldots, n$ and v_1, \ldots, v_n .

Note: $h_i(v_{-i})$ independent of player *i*'s declared preference \Rightarrow $h_i(v_{-i}) = c$ constant from player *i*'s perspective.

Utility of player
$$i = v_i(f(v_1, \ldots, v_n)) + \sum_{j \neq i} v_j(f(v_1, \ldots, v_n)) - c = \sum_{j=1}^n v_j(f(v_1, \ldots, v_n)) - c = \text{social welfare} - c.$$

Second Price Auctions

ã

Incentive Compatible Mechanisms

VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let *i*, v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i .

Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$. Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare $\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$

 $\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let *i*, v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i .

Let
$$a = f(v_i, v_{-i})$$
 and $a' = f(v'_i, v_{-i})$.
Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare $\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$

 $\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let *i*, v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i .

Let
$$a = f(v_i, v_{-i})$$
 and $a' = f(v'_i, v_{-i})$.
Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare $\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$

 $\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v_j', v_{-i})) - p_i(v_j', v_{-i}).$

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

Theorem (Vickrey-Clarke-Groves)

Every VCG mechanism is incentive compatible.

Proof

Let *i*, v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i .

Let
$$a = f(v_i, v_{-i})$$
 and $a' = f(v'_i, v_{-i})$.
Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare $\Rightarrow v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$

 $\Rightarrow v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i}).$

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms

- So far: payment functions p_i and functions h_i unspecified.
- One possibility: h_i(v_{-i}) = 0 for all h_i and v_{-i}.
 Drawback: Too much money distributed among players (more that necessary).
- Further requirements:
 - Players should pay at most as much as they value the outcome.
 - Players should only pay, never receive money.

Second Price Auctions

> Incentive Compatible Mechanisms

Individual Rationality, Positive Transfers

Definition (individual rationality)

A mechanism is individually rational if all players always get a nonnegative utility, i.e., if for all i = 1, ..., n and all $v_1, ..., v_n$,

$$v_i(f(v_1,\ldots,v_n))-p_i(v_1,\ldots,v_n)\geq 0.$$

Definition (positive transfers)

A mechanism has no positive transfers if no player is ever paid money, i.e., for all preferences v_1, \ldots, v_n ,

$$p_i(v_1,\ldots,v_n)\geq 0.$$

Incentive Compatible Mechanisms

Definition (Clarke pivot function)

The Clarke pivot function is the function

$$h_i(v_{-i}) = \max_{b \in A} \sum_{j \neq i} v_j(b).$$

This leads to payment functions

$$p_i(v_1,\ldots,v_n) = \max_{b\in A}\sum_{j\neq i}v_j(b) - \sum_{j\neq i}v_j(a)$$

for $a = f(v_1, ..., v_n)$.

- Player *i* pays the difference between what the other players could achieve without him and what they achieve with him.
- Each player internalizes the externalities he causes.

Second Price Auctions

Incentive Compatible Mechanisms

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: *a* best, since *v*₁(*a*) + *v*₂(*a*) = 10 + 9 = 19 > 17 = 2 + 15 = *v*₁(*b*) + *v*₂(*k*)
- With player 1, other players (i.e., player 2) lose $v_2(b) v_2(a) = 6$ units of utility.
- $\Rightarrow \text{ Clarke pivot function } h_1(v_2) = 15$ $\Rightarrow \text{ payment function}$

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq 1} v_j(b) - \sum_{j\neq 1} v_j(a) = 15 - 9 = 6.$$

BURG

Auctions

Mechanisms VCG Mechanisms

Example

Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.

Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.

- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since
 v₁(a) + v₂(a) = 10 + 9 = 19 > 17 = 2 + 15 = v₁(b) + v₂(b)
- With player 1, other players (i.e., player 2) lose $v_2(b) v_2(a) = 6$ units of utility.
- $\Rightarrow \text{ Clarke pivot function } h_1(v_2) = 15$ $\Rightarrow \text{ payment function}$

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{i\neq 1} v_i(b) - \sum_{i\neq 1} v_i(a) = 15 - 9 = 6.$$

BURG

Auctions

Mechanisms VCG Mechanisms

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: *a* best, since
 v₁(a) + v₂(a) = 10 + 9 = 19 > 17 = 2 + 15 = v₁(b) + v₂(b)
- With player 1, other players (i.e., player 2) lose $v_2(b) v_2(a) = 6$ units of utility.
- $\Rightarrow \text{Clarke pivot function } h_1(v_2) = 15$ $\Rightarrow \text{payment function}$

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{i\neq 1} v_i(b) - \sum_{i\neq 1} v_i(a) = 15 - 9 = 6.$$

BURG

Auctions

Mechanisms

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: *a* best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose v₂(b) - v₂(a) = 6 units of utility.
- $\Rightarrow \text{Clarke pivot function } h_1(v_2) = 15$ $\Rightarrow \text{payment function}$

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{i\neq 1} v_i(b) - \sum_{i\neq 1} v_i(a) = 15 - 9 = 6.$$

Second Pric Auctions

BURG

Incentive Compatible Mechanisms

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: *a* best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose v₂(b) - v₂(a) = 6 units of utility.

$\Rightarrow \text{ Clarke pivot function } h_1(v_2) = 1!$ $\Rightarrow \text{ payment function}$

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{i\neq 1} v_j(b) - \sum_{i\neq 1} v_j(a) = 15 - 9 = 6.$$

BURG

Auctions

Mechanisms

Clarke Pivot Bule

VCG

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: *a* best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose v₂(b) - v₂(a) = 6 units of utility.
- \Rightarrow Clarke pivot function $h_1(v_2) = 15$

 \Rightarrow payment function

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{i\neq 1} v_j(b) - \sum_{i\neq 1} v_j(a) = 15 - 9 = 6.$$

BURG

Second Price Auctions

Incentive Compatible Mechanisms

Example

- Players $N = \{1, 2\}$, alternatives $A = \{a, b\}$.
- Values: $v_1(a) = 10$, $v_1(b) = 2$, $v_2(a) = 9$ and $v_2(b) = 15$.
- Without player 1: *b* best, since $v_2(b) = 15 > 9 = v_2(a)$.
- With player 1: a best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b)$.
- With player 1, other players (i.e., player 2) lose v₂(b) - v₂(a) = 6 units of utility.
- \Rightarrow Clarke pivot function $h_1(v_2) = 15$
- \Rightarrow payment function

$$p_1(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq 1} v_j(b) - \sum_{j\neq 1} v_j(a) = 15 - 9 = 6.$$

DRG

2

Second Price

Mechanisms

Clarke Pivot Bule

VCG

Auctions

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \ge 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{j=1}^n v_j(a)$, and *b* the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for *i*: $p_i(v_1, ..., v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since *b* maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, \ldots, v_n) \ge 0$ (no positive transfers).

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \ge 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{j=1}^n v_j(a)$, and *b* the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for *i*: $p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since *b* maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, ..., v_n) \ge 0$ (no positive transfers).

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \ge 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{j=1}^n v_j(a)$, and *b* the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for *i*: $p_i(v_1, ..., v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since *b* maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, \ldots, v_n) \ge 0$ (no positive transfers).

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) \ge 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{j=1}^n v_j(a)$, and *b* the alternative maximizing $\sum_{j \neq i} v_j(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b)$.

Payment function for $i: p_i(v_1, \ldots, v_n) = \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$.

Since *b* maximizes $\sum_{j \neq i} v_j(b)$: $p_i(v_1, ..., v_n) \ge 0$ (no positive transfers).

UNI FREIBURG

Second Price Auctions

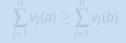
Incentive Compatible Mechanisms

Proof (ctd.)

Individual rationality: Since $v_i(b) \ge 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \ge \sum_{j=1}^n v_j(a) - \sum_{j=1}^n v_j(b).$$

Since *a* maximizes $\sum_{j=1}^{n} v_j(a)$,



and hence $u_i \ge 0$.

Therefore, the mechanism is also individually rational.

UNI FREIBURG

> Second Price Auctions

Incentive Compatible Mechanisms

Proof (ctd.)

Individual rationality: Since $v_i(b) \ge 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \ge \sum_{j=1}^n v_j(a) - \sum_{j=1}^n v_j(b).$$

Since *a* maximizes $\sum_{j=1}^{n} v_j(a)$,

$$\sum_{j=1}^n v_j(a) \ge \sum_{j=1}^n v_j(b)$$

and hence $u_i \ge 0$.

Therefore, the mechanism is also individually rational.

BURG

Second Price

Mechanisms VCG Mechanisms

Auctions

Clarke Pivot Rule

Proof (ctd.)

Individual rationality: Since $v_i(b) \ge 0$,

$$u_i = v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_j(b) \ge \sum_{j=1}^n v_j(a) - \sum_{j=1}^n v_j(b).$$

Since *a* maximizes $\sum_{j=1}^{n} v_j(a)$,

$$\sum_{j=1}^n v_j(a) \ge \sum_{j=1}^n v_j(b)$$

and hence $u_i \ge 0$.

Therefore, the mechanism is also individually rational.

> Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule Examples

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a
- Let $a = f(v_1, \dots, v_n) = \operatorname{argmax}_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$
- Winner pays value of second highest bid:

$$p_{a}(v_{1},...,v_{n}) = \max_{b \in A} \sum_{j \neq a} v_{j}(b) - \sum_{j \neq a} v_{j}(a)$$
$$= \max_{b \in A \setminus \{a\}} w_{b} - 0 = \max_{b \in A \setminus \{a\}} w_{b}$$

Non-winners pay nothing: For
$$i \neq a$$

$$p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
$$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = w_a$$

Second Price

Auctions Incentive

Compatible Mechanisms

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a .
- Let $a = f(v_1, \dots, v_n) = \operatorname{argmax}_{j \in A} w_j$ be the highest bidder
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$
- Winner pays value of second highest bid

$$p_{a}(v_{1},...,v_{n}) = \max_{b \in A} \sum_{j \neq a} v_{j}(b) - \sum_{j \neq a} v_{j}(a)$$
$$= \max_{b \in A \setminus \{a\}} w_{b} - 0 = \max_{b \in A \setminus \{a\}} w_{b}$$

Non-winners pay nothing: For $i \neq a$

$$p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
$$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a$$

UNI FREIBU

> Second Price Auctions

Incentive Compatible Mechanisms

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a .
- Let $a = f(v_1, ..., v_n) = \operatorname{argmax}_{i \in A} w_i$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$
- Winner pays value of second highest bid

$$p_{a}(v_{1},...,v_{n}) = \max_{b \in A} \sum_{j \neq a} v_{j}(b) - \sum_{j \neq a} v_{j}(a)$$
$$= \max_{b \in A \setminus \{a\}} w_{b} - 0 = \max_{b \in A \setminus \{a\}} w_{b}$$

Non-winners pay nothing: For
$$i \neq a_i$$

$$p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
$$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a$$

UNI FREIBL

> Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule

SS 2019

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a .
- Let $a = f(v_1, ..., v_n) = \operatorname{argmax}_{i \in A} w_i$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{i \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.

Winner pays value of second highest bid:

$$p_a(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)$$
$$= \max_{b \in A} w_b - 0 = \max_{b \in A} w_b$$

Non-winners pay nothing: For $i \neq a_i$

$$p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
$$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a$$

UNI FREIBL

> Second Price Auctions

Incentive Compatible Mechanisms

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a .
- Let $a = f(v_1, ..., v_n) = \operatorname{argmax}_{i \in A} w_i$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.

Winner pays value of second highest bid:

$$p_a(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq a} v_j(b) - \sum_{j \neq a} v_j(a)$$
$$= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b$$

Non-winners pay nothing: For $i \neq a_i$

$$p_i(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) - \sum_{j \neq i} v_j(a)$$
$$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a$$

UNI FREIBL

> Second Price Auctions

Incentive Compatible Mechanisms

- A = N. Valuations: w_i . $v_a(a) = w_a$, $v_i(a) = 0$ ($i \neq a$).
- a maximizes social welfare $\sum_{i=1}^{n} v_i(a)$ iff a maximizes w_a .
- Let $a = f(v_1, ..., v_n) = \operatorname{argmax}_{j \in A} w_j$ be the highest bidder.
- Payments: $p_i(v_1, \ldots, v_n) = \max_{b \in A} \sum_{j \neq i} v_j(b) \sum_{j \neq i} v_j(a)$.
- But $\max_{b \in A} \sum_{j \neq i} v_j(b) = \max_{b \in A \setminus \{i\}} w_b$.
- Winner pays value of second highest bid:

$$p_a(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq a} v_j(b) - \sum_{j\neq a} v_j(a)$$
$$= \max_{b\in A\setminus\{a\}} w_b - 0 = \max_{b\in A\setminus\{a\}} w_b.$$

■ Non-winners pay nothing: For $i \neq a$,

$$p_i(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq i} v_j(b) - \sum_{j\neq i} v_j(a)$$
$$= \max_{b\in A\setminus\{i\}} w_b - w_a = w_a - w_a = 0.$$

Second Price Auctions

Incentive Compatible Mechanisms

Example: Bilateral Trade

- Seller *s* offers item he values with $0 \le w_s \le 1$.
- Potential buyer *b* values item with $0 \le w_b \le 1$.
- Alternatives $A = \{trade, no-trade\}$.
- Valuations:

 $v_s(no-trade) = 0,$ $v_s(trade) = -w_s,$ $v_b(no-trade) = 0,$ $v_b(trade) = w_b.$

VCG mechanism maximizes v_s(a) + v_b(a).
We have

 $v_s(trade) + v_b(trade) = w_b - w_s,$ $v_s(no-trade) + v_b(no-trade) = 0$

i.e., *trade* maximizes social welfare iff $w_b \ge w_s$.

BURG

Second Price

Mechanisms VCG Mechanisms

Examples

Example: Bilateral Trade (ctd.)

Requirement: if no-trade is chosen, neither player pays anything:

$$p_s(v_s,v_b)=p_b(v_s,v_b)=0.$$

To that end, choose Clarke pivot function for buyer:

 $h_b(v_s) = \max_{a \in A} v_s(a).$

For seller: Modify Clarke pivot function by an additive constant and set

$$h_s(v_b) = \max_{a \in A} v_b(a) - w_b.$$

Second Price Auctions

BURG

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule

26/35

Example: Bilateral Trade (ctd.)

For alternative *no-trade*,

$$p_{s}(v_{s}, v_{b}) = \max_{a \in A} v_{b}(a) - w_{b} - v_{b}(no-trade)$$
$$= w_{b} - w_{b} - 0 = 0 \quad \text{and}$$
$$p_{b}(v_{s}, v_{b}) = \max_{a \in A} v_{s}(a) - v_{s}(no-trade)$$
$$= 0 - 0 = 0.$$

■ For alternative *trade*,

$$p_{s}(v_{s}, v_{b}) = \max_{a \in A} v_{b}(a) - w_{b} - v_{b}(trade)$$
$$= w_{b} - w_{b} - w_{b} = -w_{b} \text{ and}$$
$$p_{b}(v_{s}, v_{b}) = \max_{a \in A} v_{s}(a) - v_{s}(trade)$$
$$= 0 + w_{s} = w_{s}.$$

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule Examples

Example: Bilateral Trade (ctd.)

- Because w_b ≥ w_s, the seller gets at least as much as the buyer pays, i.e., the mechanism subsidizes the trade.
- Without subsidies, no incentive compatible bilateral trade possible.
- Note: Buyer and seller can exploit the system by colluding.

FRE

> Second Price Auctions

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule Examples

Example: Public Project

- Project costs C units.
- Each citizen *i* privately values the project at w_i units.
- Government will undertake project if $\sum_i w_i > C$.
- Alternatives: A = {project, no-project}.
- Valuations:

$$v_G(project) = -C,$$
 $v_G(no-project) = 0,$
 $v_i(project) = w_i,$ $v_i(no-project) = 0.$

VCG mechanism with Clarke pivot rule: for each citizen *i*,

$$\begin{split} h_i(v_{-i}) &= \max_{a \in A} \left(\sum_{j \neq i} v_j(a) + v_G(a) \right) \\ &= \begin{cases} \sum_{j \neq i} w_j - C, & \text{if } \sum_{j \neq i} w_j > C \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

UNI FREIBURG

Second Price Auctions

Incentive Compatible Mechanisms

Example: Public Project (ctd.)

Citizen *i* pivotal if ∑_j w_j > C and ∑_{j≠i} w_j ≤ C.
 Payment function for citizen *i*:

$$p_i(v_{1..n}, v_G) = h_i(v_{-i}) - \left(\sum_{j \neq i} v_j(f(v_{1..n}, v_G)) + v_G(f(v_{1..n}, v_G))\right)$$

Case 1: Project undertaken, i pivotal:

$$p_i(v_{1..n},v_G)=0-\left(\sum_{j\neq i}w_j-C\right)=C-\sum_{j\neq i}w_j$$

Case 2: Project undertaken, *i* not pivotal:

$$p_i(v_{1..n}, v_G) = \left(\sum_{j \neq i} w_j - C\right) - \left(\sum_{j \neq i} w_j - C\right) = 0$$

Case 3: Project not undertaken:

$$p_i(v_{1..n},v_G)=0$$

æ

Incentive Compatible Mechanisms

Example: Public Project (ctd.)

I.e., citizen i pays nonzero amount

$$C-\sum_{j\neq i}w_j$$

only if he is pivotal.

He pays difference between value of project to fellow citizens and cost C, in general less than w_i.

(

Generally,

$$\sum_{i} p_i$$
(project) $\leq C$

i.e., project has to be subsidized.

æ

Incentive Compatible Mechanisms

VCG Mechanisms Clarke Pivot Rule

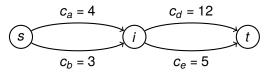
Examples

Example: Buying a Path in a Network

- Communication network modeled as G = (V, E).
- Each link $e \in E$ owned by different player e.
- Each link $e \in E$ has cost c_e if used.
- Objective: procure communication path from s to t.
- Alternatives: $A = \{p | p \text{ path from } s \text{ to } t\}.$
- Valuations: $v_e(p) = -c_e$, if $e \in p$, and $v_e(p) = 0$, if $e \notin p$.
- Maximizing social welfare:

minimize $\sum_{e \in p} c_e$ over all paths *p* from *s* to *t*.

Example:



2

Incentive Compatible Mechanisms

Example: Buying a Path in a Network (ctd.)

For G = (V, E) and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$. VCG mechanism:

$$h_e(v_{-e}) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'}$$

i.e., the cost of the cheapest path from *s* to *t* in $G \setminus e$. (Assume that *G* is 2-connected, s.t. such p' exists.) Payment functions: for chosen path $p = f(v_1, ..., v_n)$,

$$p_e(v_1,\ldots,v_n) = h_e(v_{-e}) - \sum_{e \neq e' \in p} -c_{e'}.$$

Case 1:
$$e \notin p$$
. Then $p_e(v_1, \ldots, v_n) = 0$.
Case 2: $e \in p$. Then

$$p_e(v_1,\ldots,v_n) = \max_{p'\in G\setminus e} \sum_{e'\in p'} -c_{e'} - \sum_{e\neq e'\in p} -c_{e'}.$$

Second Price Auctions

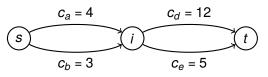
DRD

2

Incentive Compatible Mechanisms

Example: Buying a Path in a Network (ctd.)

Example:



Cost along b and e: 8

- Cost without e: 3
- Cost of cheapest path without e: 15 (along b and d)
- Difference is payment: -15 (-3) = -12 I.e., owner of arc *e* gets payed 12 for using his arc.
- Note: Alternative path after deletion of *e* does not necessarily differ from original path at only one position. Could be totally different.

UNI FREIBURG

> Second Price Auctions

Incentive Compatible Mechanisms

- New preference model: with money.
- VCG mechanisms generalize Vickrey auctions.
- VCG mechanisms are incentive compatible mechanisms maximizing social welfare.
- With Clarke pivot rule: even no positive transfers and individually rational (if nonnegative valuations).
- Various application areas.

Second Price Auctions

Incentive Compatible Mechanisms