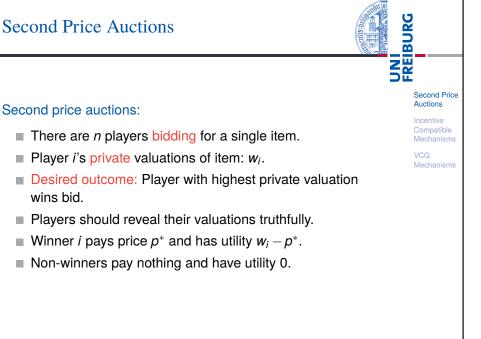


Second Price Auctions



6/35

UNI FREIBURG

Second Price

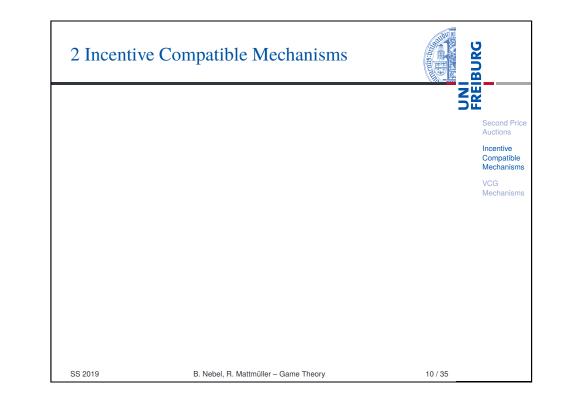
Mechanisms

Mechanisms

VCG

Auctions

BURG Second Price Auctions **FREI** Second Price Formally: Auctions A = NMechanisms if a = iWi VCG \blacksquare $V_i(a) =$ Mechanisms 0 else ■ What about payments? Say player *i* wins: \square $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$. \square $p^* = w_i$ (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \varepsilon$. **better**: $p^* = \max_{i \neq i} w_i$ (winner pays second highest bid). SS 2019 B. Nebel, R. Mattmüller - Game Theory 7/35



Vickrey Auction

SS 2019

wins bid.

Definition (Vickrey Auction)

The winner of the Vickrey Auction (aka second price auction) is the player *i* with the highest declared value w_i . He has to pay the second highest declared bid $p^* = \max_{i \neq i} w_i$.

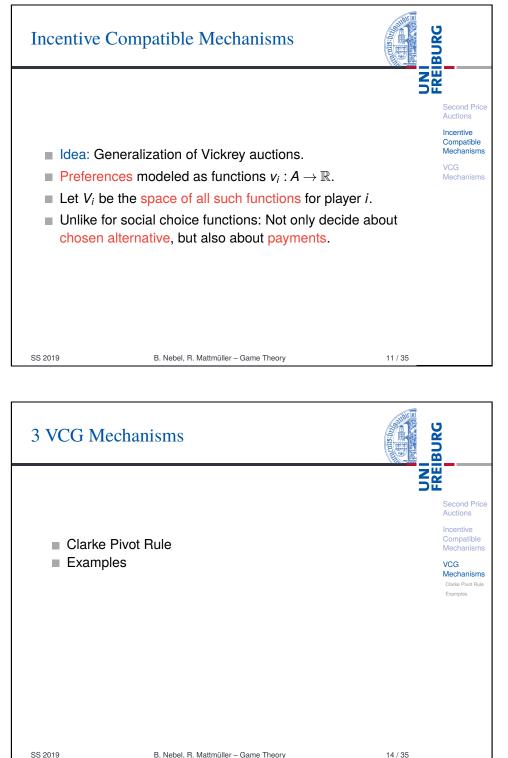
B. Nebel, R. Mattmüller - Game Theory

Proposition (Vickrey)

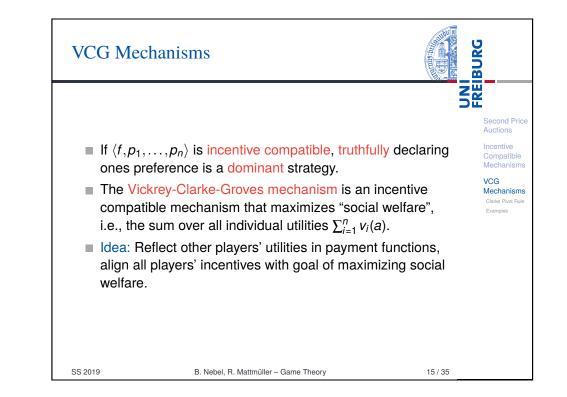
Let *i* be one of the players and w_i his valuation for the item, u_i his utility if he truthfully declares w_i as his valuation of the item, and u'_i his utility if he falsely declares w'_i as his valuation of the item. Then $u_i \ge u'_i$.

Proof

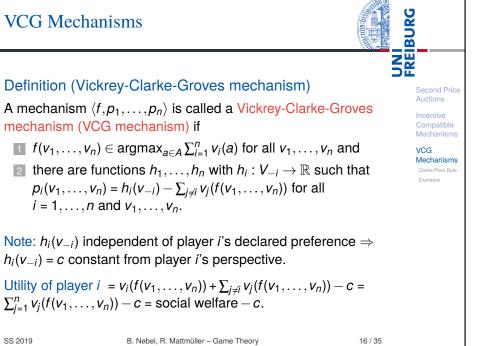
See http://en.wikipedia.org/wiki/Vickrey auction. SS 2019 B. Nebel, R. Mattmüller - Game Theory 8/35

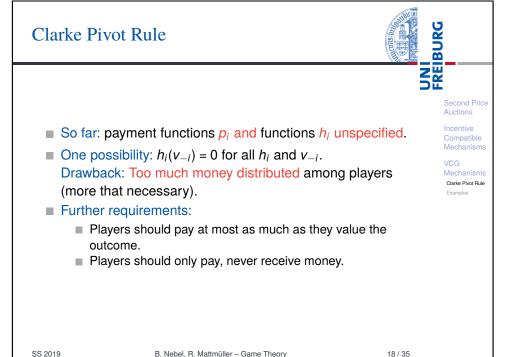


UNI FREIBURG **Mechanisms Definition (Mechanism)** Second Price Auctions A mechanism $\langle f, p_1, \ldots, p_n \rangle$ consists of Incentive Compatible **a social choice function** $f: V_1 \times \cdots \times V_n \to A$ and Mechanisms ■ for each player *i*, a payment function VCG Mechanisms $p_i: V_1 \times \cdots \times V_n \to \mathbb{R}.$ Definition (Incentive Compatibility) A mechanism $\langle f, p_1, \dots, p_n \rangle$ is called incentive compatible if for each player i = 1, ..., n, for all preferences $v_1 \in V_1, ..., v_n \in V_n$ and for each preference $v'_i \in V_i$, $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) \ge v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$ SS 2019 12/35 B. Nebel, R. Mattmüller - Game Theory



VCG Mechanisms

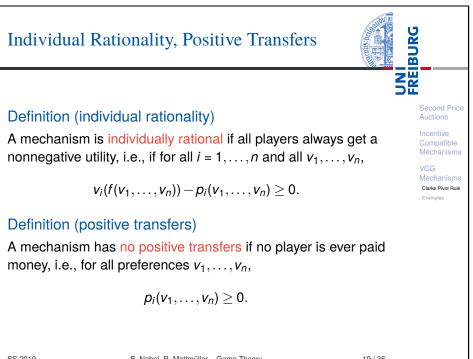




VCG Mechanisms Theorem (Vickrey-Clarke-Groves) Every VCG mechanism is incentive compatible. Proof Let *i*, v_{-i} , v_i and v'_i be given. Show: Declaring true preference v_i dominates declaring false preference v'_i . Let $a = f(v_i, v_{-i})$ and $a' = f(v'_i, v_{-i})$. Utility player $i = \begin{cases} v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) & \text{if declaring } v_i \\ v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i}) & \text{if declaring } v'_i \end{cases}$

Alternative $a = f(v_i, v_{-i})$ maximizes social welfare \Rightarrow $v_i(a) + \sum_{j \neq i} v_j(a) \ge v_i(a') + \sum_{j \neq i} v_j(a').$ \Rightarrow $v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i}) > v_i(f(v'_i, v_{-i})) - p_i(v'_i, v_{-i}).$

B. Nebel, R. Mattmüller - Game Theory



SS 2019

SS 2019

BURG

FREI

17/35

Second Price

Auctions

VCG

Examples

Mechanisms

Clarke Pivot Function



SS 2019

B. Nebel, R. Mattmüller - Game Theory

Clarke Pivot Rule

with him.

Lemma (Clarke pivot rule)

A VCG mechanism with Clarke pivot functions has no positive transfers. If $v_i(a) > 0$ for all i = 1, ..., n, $v_i \in V_i$ and $a \in A$, then the mechanism is also individually rational.

Proof

Let $a = f(v_1, ..., v_n)$ be the alternative maximizing $\sum_{i=1}^{n} v_i(a)$, and *b* the alternative maximizing $\sum_{i \neq i} v_i(b)$.

Utility of player *i*: $u_i = v_i(a) + \sum_{i \neq i} v_i(a) - \sum_{i \neq i} v_i(b)$.

Payment function for *i*: $p_i(v_1, \ldots, v_n) = \sum_{i \neq i} v_i(b) - \sum_{i \neq i} v_i(a)$.

Since *b* maximizes $\sum_{i \neq i} v_i(b)$: $p_i(v_1, \ldots, v_n) \ge 0$ (no positive transfers).

•	٠	٠	

22/35

20/35

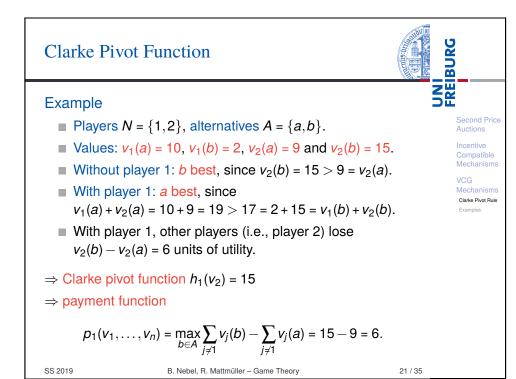
UNI FREIBURG

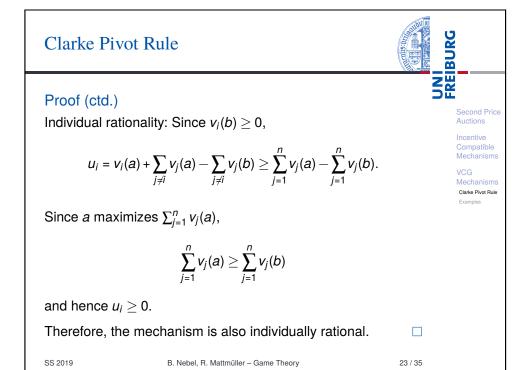
Second Price

Mechanism VCG

Mechanism Clarke Pivot Bule

Auctions

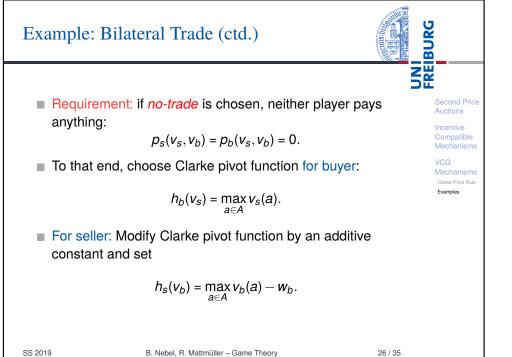


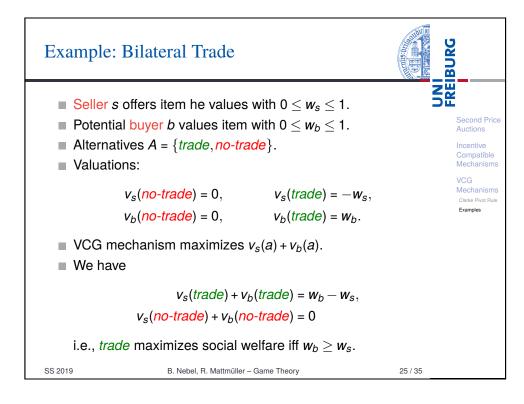


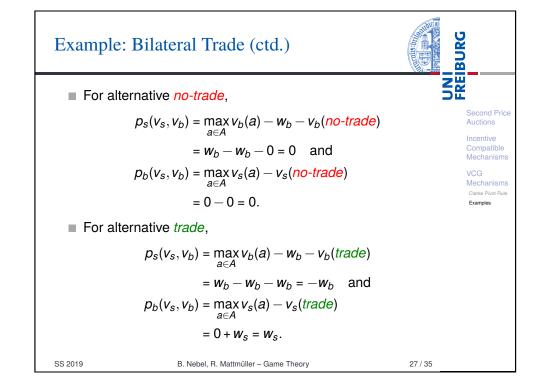
V

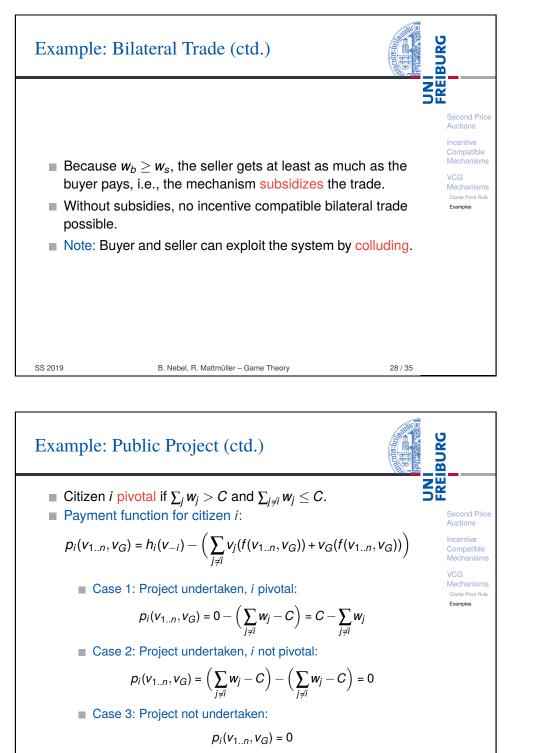
Vickrey Auction as a VCG Mechanism	BURG
 A = N. Valuations: w_i. v_a(a) = w_a, v_i(a) = 0 (i ≠ a). a maximizes social welfare ∑ⁿ_{i=1} v_i(a) iff a maximizes w_a. Let a = f(v₁,,v_n) = argmax_{j∈A} w_j be the highest bidder. Payments: p_i(v₁,,v_n) = max_{b∈A}∑_{j≠i} v_j(b) - ∑_{j≠i} v_j(a). But max_{b∈A}∑_{j≠i} v_j(b) = max_{b∈A} {i} w_b. Winner pays value of second highest bid: 	Second Price Auctions Incentive Compatible Mechanisms VCG Mechanisms Glarke Poot Bule
$p_a(v_1,\ldots,v_n) = \max_{b\in A} \sum_{j\neq a} v_j(b) - \sum_{j\neq a} v_j(a)$	Examples
$= \max_{b \in A \setminus \{a\}} w_b - 0 = \max_{b \in A \setminus \{a\}} w_b.$	
Non-winners pay nothing: For $i \neq a$,	
$\mathcal{P}_i(v_1,\ldots,v_n) = \max_{b\in A}\sum_{j\neq i}v_j(b) - \sum_{j\neq i}v_j(a)$	
$= \max_{b \in A \setminus \{i\}} w_b - w_a = w_a - w_a = 0.$	
SS 2019 B. Nebel, R. Mattmüller – Game Theory 24 / 35	

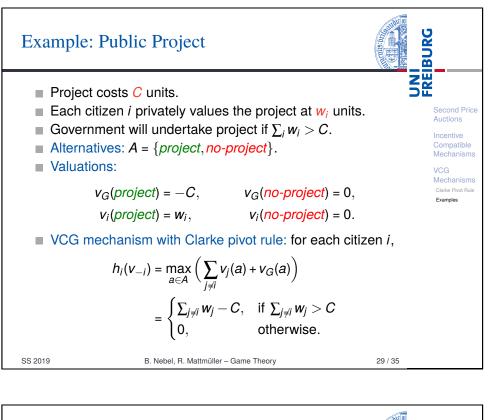
R HOLE

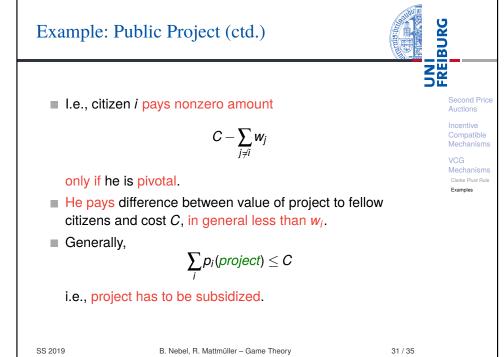








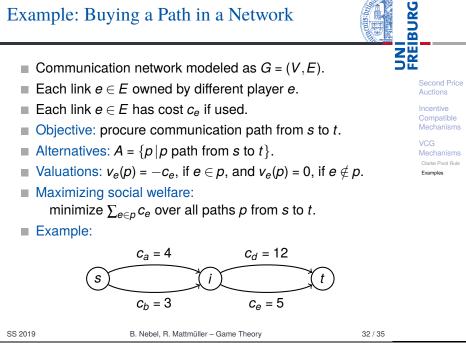


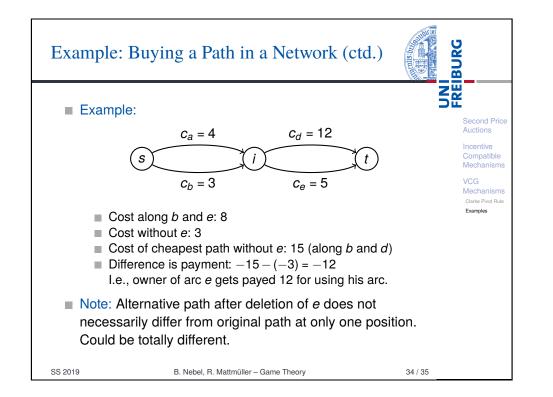


SS 2019

30 / 35

Example: Buying a Path in a Network





Example: Buying a Path in a Network (ctd.)		BURG
For $G = (V, E)$ and $e \in E$ let $G \setminus e = (V, E \setminus \{e\})$. VCG mechanism:	N	Second Price Auctions
$h_{e}(v_{-e}) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'}$		Incentive Compatible Mechanisms
 i.e., the cost of the cheapest path from <i>s</i> to <i>t</i> in <i>G</i> \ <i>e</i>. (Assume that <i>G</i> is 2-connected, s.t. such <i>p'</i> exists.) ■ Payment functions: for chosen path <i>p</i> = <i>f</i>(<i>v</i>₁,,<i>v</i>_n), 		VCG Mechanisms Clarke Pivot Rule Examples
$\mathcal{P}_{e}(v_{1},\ldots,v_{n})=h_{e}(v_{-e})-\sum_{e eq e'\in p}-c_{e'}.$		
Case 1: $e \notin p$. Then $p_e(v_1, \ldots, v_n) = 0$. Case 2: $e \in p$. Then		
$p_e(v_1,\ldots,v_n) = \max_{p' \in G \setminus e} \sum_{e' \in p'} -c_{e'} - \sum_{e \neq e' \in p} -c_{e'}.$		
SS 2019 B. Nebel, R. Mattmüller – Game Theory	33 / 35	

