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So far: All players move simultaneously, and then the
outcome is determined.
Often in practice: Several moves in sequence (e. g. in
chess).
 cannot be directly reflected by strategic games.
Extensive games (with perfect information) reflect such
situations by modeling games as game trees.
Idea: Players have several decision points where they can
decide how to play.
Strategies: Mappings from decision points in the game
tree to actions to be played.
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Definition (Extensive game with perfect information)
An extensive game with perfect information is a tuple
Γ = 〈N,H,P, (ui)i∈N〉 that consists of:

A finite non-empty set N of players.
A set H of (finite or infinite) sequences, called histories,
such that

it contains the empty sequence 〈〉 ∈ H,
H is closed under prefixes: if 〈a1, . . . ,ak〉 ∈ H for some
k ∈ N∪{∞}, and l < k, then also 〈a1, . . . ,al〉 ∈ H, and
H is closed under limits: if for some infinite sequence
〈ai〉∞i=1, we have 〈ai〉ki=1 ∈ H for all k ∈ N, then 〈ai〉∞i=1 ∈ H.

All infinite histories and all histories 〈ai〉ki=1 ∈ H, for which
there is no ak+1 such that 〈ai〉k+1

i=1 ∈ H are called terminal
histories Z . Components of a history are called actions.

SS 2019 B. Nebel, R. Mattmüller – Game Theory 7 / 68



Motivation

Definitions

Solution
Concepts

One-
Deviation
Property

Kuhn’s
Theorem

Two
Extensions

Summary

Extensive Games

Definition (Extensive game with perfect information, ctd.)
A player function P : H \Z → N that determines which
player’s turn it is to move after a given nonterminal history.
For each player i ∈ N, a utility function (or payoff function)
ui : Z → R defined on the set of terminal histories.

The game is called finite, if H is finite. It has a finite horizon, if
the lenght of histories is bounded from above.

Assumption: All ingredients of Γ are common knowledge
amongst the players of the game.

Terminology: In the following, we will simply write extensive
games instead of extensive games with perfect information.
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Example (Division game)
Two identical objects should be divided among two
players.
Player 1 proposes an allocation.
Player 2 agrees or rejects.

On agreement: Allocation as proposed.
On rejection: Nobody gets anything.

P(〈〉) = 1

P(〈(2,0)〉) = 2

(2,0)

y

(0,0)

n

(2,0)

P(〈(1,1)〉) = 2

(1,1)

y

(0,0)

n

(1,1)
P(〈(0,2)〉) = 2

(0,2)

y

(0,0)

n

(0,2)

SS 2019 B. Nebel, R. Mattmüller – Game Theory 9 / 68



Motivation

Definitions

Solution
Concepts

One-
Deviation
Property

Kuhn’s
Theorem

Two
Extensions

Summary

Extensive Games

Example (Division game, formally)
P(〈〉) = 1

P(〈(2,0)〉) = 2

(2,0)

y

(0,0)

n

(2,0)

P(〈(1,1)〉) = 2

(1,1)

y

(0,0)

n

(1,1)
P(〈(0,2)〉) = 2

(0,2)

y

(0,0)

n

(0,2)

N = {1,2}
H = {〈〉,〈(2,0)〉,〈(1,1)〉,〈(0,2)〉,〈(2,0),y〉,〈(2,0),n〉, . . .}
P(〈〉) = 1, P(h) = 2 for all h ∈ H \Z with h 6= 〈〉
u1(〈(2,0),y〉) = 2, u2(〈(2,0),y〉) = 0, etc.
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Notation:

Let h = 〈a1, . . . ,ak〉 be a history, and a an action.
Then (h,a) is the history 〈a1, . . . ,ak ,a〉.
If h′ = 〈b1, . . . ,b`〉, then (h,h′) is the history
〈a1, . . . ,ak ,b1, . . . ,b`〉.
The set of actions from which player P(h) can choose
after a history h ∈ H \Z is written as

A(h) = {a | (h,a) ∈ H}.
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Definition (Strategy in an extensive game)
A strategy of a player i in an extensive game
Γ = 〈N,H,P, (ui)i∈N〉 is a function si that assigns to each
nonterminal history h ∈ H \Z with P(h) = i an action a ∈ A(h).
The set of strategies of player i is denoted as Si .

Remark: Strategies require us to assign actions to histories h,
even if it is clear that they will never be played (e. g., because h
will never be reached because of some earlier action).

Notation (for finite games): A strategy for a player is written as
a string of actions at decision nodes as visited in a
breadth-first order.

SS 2019 B. Nebel, R. Mattmüller – Game Theory 12 / 68



Motivation

Definitions

Solution
Concepts

One-
Deviation
Property

Kuhn’s
Theorem

Two
Extensions

Summary

Strategies

Example (Strategies in an extensive game)
P(〈〉) = 1

P(〈A〉) = 2

P(〈A,C〉) = 1
E

F

C
D

A
B

Strategies for player 1: AE, AF , BE and BF
Strategies for player 2: C and D.
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Definition (Outcome)
The outcome O(s) of a strategy profile s = (si)i∈N is the
(possibly infinite) terminal history h = 〈ai〉ki=1, with k ∈ N∪{∞},
such that for all ` ∈ N with 0≤ ` < k,

sP(〈a1,...,a`〉)(〈a1, . . . ,a`〉) = a`+1.

Example (Outcome)

P(〈〉) = 1

P(〈A〉) = 2

P(〈A,C〉) = 1
E

F
C

D
A

B

O(AF ,C) = 〈A,C,F〉
O(AE,D) = 〈A,D〉.
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Definition (Nash equilibrium in an extensive game)
A Nash equilibrium in an extensive game Γ = 〈N,H,P, (ui)i∈N〉
is a strategy profile s∗ such that for every player i ∈ N and for
all strategies si ∈ Si ,

ui(O(s∗−i ,s∗i ))≥ ui(O(s∗−i ,si)).
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Definition (Induced strategic game)
The strategic game G induced by an extensive game
Γ = 〈N,H,P, (ui)i∈N〉 is defined by G = 〈N, (A′i)i∈N , (u′i )i∈N〉,
where

A′i = Si for all i ∈ N, and
u′i (a) = ui(O(a)) for all i ∈ N.

Proposition
The Nash equilibria of an extensive game Γ are exactly the
Nash equilibria of the induced strategic game G of Γ.
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Remarks:
Each extensive game can be transformed into a strategic
game, but the resulting game can be exponentially larger.
The other direction does not work, because in extensive
games, we do not have simultaneous actions.
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Empty Threats

Example (Empty threat)
Extensive game:

P(〈〉) = 1

P(〈T〉) = 2

(0,0)

L

(2,1)

R

T

(1,2)

B

Strategies:

Player 1: T and B

Player 2: L and R

Strategic form:
L R

T 0,0 2,1

B 1,2 1,2

Nash equilibria: (B,L) and (T ,R).
However, (B,L) is not realistic:

Player 1 plays B, “fearing”
response L to T .

But player 2 would never play L
in the extensive game.
 (B,L) involves “empty threat”.
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Idea: Exclude empty threats.
How? Demand that a strategy profile is not only a Nash
equilibrium in the strategic form, but also in every subgame.

Definition (Subgame)
A subgame of an extensive game Γ = 〈N,H,P, (ui)i∈N〉, starting
after history h, is the game Γ(h) = 〈N,H|h,P|h, (ui |h)i∈N〉, where

H|h = {h′ | (h,h′) ∈ H},
P|h(h′) = P(h,h′) for all h′ ∈ H|h, and
ui |h(h′) = ui(h,h′) for all h′ ∈ H|h.
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Definition (Strategy in a subgame)
Let Γ be an extensive game and Γ(h) a subgame of Γ starting
after some history h.
For each strategy si of Γ, let si |h be the strategy induced by si
for Γ(h). Formally, for all h′ ∈ H|h,

si |h(h′) = si(h,h′).

The outcome function of Γ(h) is denoted by Oh.
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Definition (Subgame-perfect equilibrium)
A strategy profile s∗ in an extensive game Γ = 〈N,H,P, (ui)i∈N〉
is a subgame-perfect equilibrium if and only if for every player
i ∈ N and every nonterminal history h ∈ H \Z with P(h) = i,

ui |h(Oh(s∗−i |h,s∗i |h))≥ ui |h(Oh(s∗−i |h,si))

for every strategy si ∈ Si in subgame Γ(h).
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Subgame-Perfect Equilibria

P(〈〉) = 1

P(〈T〉) = 2

(0,0)

L

(2,1)

R

T

(1,2)

B

Two Nash equilibria:
(T ,R): subgame-perfect,
because:

In history h = 〈T〉:
subgame-perfect.
In history h = 〈〉: player 1
obtains utility 1 when
choosing B and utility of 2
when choosing T .

(B,L): not subgame-perfect,
since L does not maximize
the utility of player 2 in history
h = 〈T〉.
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Subgame-Perfect Equilibria

Example (Subgame-perfect equilibria in division game)

1

2

(2,0)

y

(0,0)

n

(2,0)

2

(1,1)

y

(0,0)

n

(1,1)
2

(0,2)

y

(0,0)

n

(0,2)

Equilibria in subgames:
in Γ(〈(2,0)〉): y and n
in Γ(〈(1,1)〉): only y
in Γ(〈(0,2)〉): only y
in Γ(〈〉): ((2,0),yyy)
and ((1,1),nyy)

Nash equilibria (red: empty threat):
((2,0),yyy), ((2,0),yyn), ((2,0),yny), ((2,0),ynn),
((2,0),nny), ((2,0),nnn),
((1,1),nyy), ((1,1),nyn).
((0,2),nny)
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Existence:
Does every extensive game have a subgame-perfect
equilibrium?
If not, which extensive games do have a subgame-perfect
equilibrium?

Computation:
If a subgame-perfect equilibrium exists, how to compute
it?
How complex is that computation?
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Positive case (a subgame-perfect equilibrium exists):
Step 1: Show that is suffices to consider local deviations
from strategies (for finite-horizon games).
Step 2: Show how to systematically explore such local
deviations to find a subgame-perfect equilibrium (for finite
games).
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Step 1: One-Deviation Property

Definition
Let Γ be a finite-horizon extensive game. Then `(Γ) denotes
the length of the longest history of Γ.
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Step 1: One-Deviation Property

Definition (One-deviation property)
A strategy profile s∗ in an extensive game Γ = 〈N,H,P, (ui)i∈N〉
satisfies the one-deviation property if and only if for every
player i ∈ N and every nonterminal history h ∈ H \Z with
P(h) = i,

ui |h(Oh(s∗−i |h,s∗i |h))≥ ui |h(Oh(s∗−i |h,si))

for every strategy si ∈ Si in subgame Γ(h) that differs from s∗i |h
only in the action it prescribes after the initial history of Γ(h).

Note: Without the highlighted parts, this is just the definition of
subgame-perfect equilibria!
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Step 1: One-Deviation Property

Lemma
Let Γ = 〈N,H,P, (ui)i∈N〉 be a finite-horizon extensive game.
Then a strategy profile s∗ is a subgame-perfect equilibrium of
Γ if and only if it satisfies the one-deviation property.

Proof
(⇒) Clear.
(⇐) By contradiction:
Suppose that s∗ is not a subgame-perfect equilibrium.
Then there is a history h and a player i such that si is a
profitable deviation for player i in subgame Γ(h).
. . .
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Step 1: One-Deviation Property

Proof (ctd.)
(⇐) . . .WLOG, the number of histories h′ with
si(h′) 6= s∗i |h(h′) is at most `(Γ(h)) and hence finite (finite
horizon assumption!), since deviations not on resulting
outcome path are irrelevant.
Illustration: strategies s∗1|h = AGILN and s∗2|h = CF red:

P(h) = 1

2

1
G H

C
1

I K

D

A

2

1
L M

E
1

N O

F

B
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Step 1: One-Deviation Property

Proof (ctd.)
(⇐) . . . Illustration for WLOG assumption: Assume
s1 = BHKMO (blue) profitable deviation:

P(h) = 1

2

1
G H

C
1

I K

D

A

2

1
L M

E
1

N O

F

B

Then only B and O really matter.
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Step 1: One-Deviation Property

Proof (ctd.)
(⇐) . . . Illustration for WLOG assumption: And hence
s̃1 = BGILO (blue) also profitable deviation:

P(h) = 1

2

1
G H

C
1

I K

D

A

2

1
L M

E
1

N O

F

B
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Step 1: One-Deviation Property

Proof (ctd.)
(⇐) . . .
Choose profitable deviation si in Γ(h) with minimal
number of deviation points (such si must exist).
Let h∗ be the longest history in Γ(h) with si(h∗) 6= s∗i |h(h∗),
i.e., “deepest” deviation point for si .
Then in Γ(h,h∗), si |h∗ differs from s∗i |(h,h∗) only in the initial
history.
Moreover, si |h∗ is a profitable deviation in Γ(h,h∗), since
h∗ is the longest history in Γ(h) with si(h∗) 6= s∗i |h(h∗).
So, Γ(h,h∗) is the desired subgame where a one-step
deviation is sufficient to improve utility.
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Step 1: One-Deviation Property
Example

1
2

1
G H

C D

A

2
E

1
I K

F

B

To show that (AHI,CE) is a subgame-perfect equilibrium, it
suffices to check these deviating strategies:

Player 1:
G in subgame Γ(〈A,C〉)
K in subgame Γ(〈B,F〉)
BHI in Γ

Player 2:
D in subgame Γ(〈A〉)
F in subgame Γ(〈B〉)

In particular, e.g., no need to check if strategy BGK of player 1
is profitable in Γ.
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Step 1: One-Deviation Property
Remark on Infinite-Horizon Games

The corresponding proposition for infinite-horizon games does
not hold.

Counterexample (one-player case):

0 0 0 0 0 0

1
C C C C C

S S S S S S

C, . . .

Strategy si with si(h) = S for all h ∈ H \Z
satisfies one deviation property, but
is not a subgame-perfect equilibrium, since it is
dominated by s∗i with s∗i (h) = C for all h ∈ H \Z .
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Step 2: Kuhn’s Theorem

Theorem (Kuhn)
Every finite extensive game has a subgame-perfect
equilibrium.

Proof idea:
Proof is constructive and builds a subgame-perfect
equilibrium bottom-up (aka backward induction).
For those familiar with the Foundations of AI lecture:
generalization of Minimax algorithm to general-sum
games with possibly more than two players.

SS 2019 B. Nebel, R. Mattmüller – Game Theory 41 / 68



Motivation

Definitions

Solution
Concepts

One-
Deviation
Property

Kuhn’s
Theorem

Two
Extensions

Summary

Step 2: Kuhn’s Theorem

Example
1

(1,5)

2

(1,5)

(1,5)

C

(2,3)

D

A

2

(0,8)

(3,4)

E

(0,8)

F

B

s2(〈A〉) = C t1(〈A〉) = 1 t2(〈A〉) = 5
s2(〈B〉) = F t1(〈B〉) = 0 t2(〈B〉) = 8

s1(〈〉) = A t1(〈〉) = 1 t2(〈〉) = 5
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Step 2: Kuhn’s Theorem

A bit more formally:

Proof
Let Γ = 〈N,H,P, (ui)i∈N〉 be a finite extensive game.
Construct a subgame-perfect equilibrium by induction on
`(Γ(h)) for all subgames Γ(h). In parallel, construct functions
ti : H→ R for all players i ∈ N s. t. ti(h) is the payoff for player i
in a subgame-perfect equilibrium in subgame Γ(h).
Base case: If `(Γ(h)) = 0, then ti(h) = ui(h) for all i ∈ N.
. . .
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Step 2: Kuhn’s Theorem

Proof (ctd.)
Inductive case: If ti(h) already defined for all h ∈ H with
`(Γ(h))≤ k, consider h∗ ∈ H with `(Γ(h∗)) = k +1 and P(h∗) = i.
For all a ∈ A(h∗), `(Γ(h∗,a))≤ k, let

si(h∗) := argmax
a∈A(h∗)

ti(h∗,a) and

tj(h∗) := tj(h∗,si(h∗)) for all players j ∈ N.

Inductively, we obtain a strategy profile s that satisfies the
one-deviation property.
With the one-deviation property lemma it follows that s is a
subgame-perfect equilibrium.
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Step 2: Kuhn’s Theorem

In principle: sample subgame-perfect equilibrium
effectively computable using the technique from the
above proof.
In practice: often game trees not enumerated in advance,
hence unavailable for backward induction.
E.g., for branching factor b and depth m, procedure needs
time O(bm).
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Step 2: Kuhn’s Theorem
Remark on Infinite Games

Corresponding proposition for infinite games does not hold.

Counterexamples (both for one-player case):

A) finite horizon, infinite branching factor:

Infinitely many actions a ∈ A = [0,1) with payoffs u1(〈a〉) = a for
all a ∈ A.
There exists no subgame-perfect equilibrium in this game.
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Step 2: Kuhn’s Theorem
Remark on Infinite Games

B) infinite horizon, finite branching factor:

1 2 3 4 5 6

0
C C C C C

S S S S S S

C, . . .

u1(CCC . . . ) = 0 and u1(CC . . .C︸ ︷︷ ︸
n

S) = n +1.

No subgame-perfect equilibrium.
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Step 2: Kuhn’s Theorem

Uniqueness:
Kuhn’s theorem tells us nothing about uniqueness of
subgame-perfect equilibria. However, if no two histories get the
same evaluation by any player, then the subgame-perfect
equilibrium is unique.
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Extended Example: Pirate Game

1 There are 5 rational pirates, A,B,C,D and E. They find
100 gold coins. They must decide how to distribute them.

2 The pirates have a strict order of seniority: A is senior to B,
who is senior to C, who is senior to D, who is senior to E.

3 The pirate world’s rules of distribution say that the most
senior pirate first proposes a distribution of coins. The
pirates, including the proposer, then vote on whether to
accept this distribution (in order from most junior to
senior). In case of a tie vote, the proposer has the casting
vote. If the distribution is accepted, the coins are
disbursed and the game ends. If not, the proposer is
thrown overboard from the pirate ship and dies, and the
next most senior pirate makes a new proposal to apply
the method again.
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Pirates: General Setting & Utility

4 The pirates do not trust each other, and will neither make
nor honor any promises between pirates apart from a
proposed distribution plan that gives a whole number of
gold coins to each pirate.

5 Pirates base their decisions on three factors. First of all,
each pirate wants to survive. Second, everything being
equal, each pirate wants to maximize the number of gold
coins each receives. Third, each pirate would prefer to
throw another overboard, if all other results would
otherwise be equal.
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Pirates: Formalization

Players N = {A,B,C,D,E};
actions are:

proposals by a pirate: 〈A : xA,B : xb,C : xB,D : xD,E : xE〉,
with ∑i∈{A,B,C,D,E} xi = 100;
votings: y for accepting, n for rejecting;

histories are sequences of a proposal, followed by votings
of the alive pirates;
utilities:

for pirates who are alive: utilities are according to the
accepted proposal plus x/100, x being the number of
dead pirates;
for dead pirates: -100.

Remark: Very large game tree!
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Pirates: Analysis by Backward Induction

1 Assume only D and E are still alive. D can propose
〈A : 0,B : 0,C : 0,D : 100,E : 0〉, because D has the
casting vote!

2 Assume C, D, and E are alive. For C it is enough to offer
1 coin to E to get his vote: 〈A : 0,B : 0,C : 99,D : 0,E : 1〉.

3 Assume B, C, D, and E are alive. B offering D one coin is
enough because of the casting vote:
〈A : 0,B : 99,C : 0,D : 1,E : 0〉.

4 Assume A, B, C, D, and E are alive. A offering C and E
each one coin is enough: 〈A : 98,B : 0,C : 1,D : 0,E : 1〉
(note that giving 1 to D instaed to E does not help).
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Simultaneous Moves

Definition
An extensive game with simultaneous moves is a tuple
Γ = 〈N,H,P, (ui)i∈N〉, where

N, H, P and (ui) are defined as before, and
P : H→ 2N assigns to each nonterminal history a set of
players to move; for all h ∈ H \Z , there exists a family
(Ai(h))i∈P(h) such that

A(h) = {a | (h,a) ∈ H} = ∏
i∈P(h)

Ai(h).
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Simultaneous Moves

Intended meaning of simultaneous moves: All players
from P(h) move simultaneously.
Strategies: Functions si : h 7→ ai with ai ∈ Ai(h).
Histories: Sequences of vectors of actions.
Outcome: Terminal history reached when tracing strategy
profile.
Payoffs: Utilities at outcome history.
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Simultaneous Moves
One-Deviation Property and Kuhn’s Theorem

Remark:
The one-deviation property still holds for extensive game
with perfect information and simultaneous moves.
Kuhn’s theorem does not hold for extensive game with
simultaneous moves.
Example: Matching Pennies can be viewed as extensive
game with simultaneous moves. No Nash
equilibrium/subgame-perfect equilibrium.

player 1

player 2
H T

H 1,−1 −1, 1
T −1, 1 1,−1

 Need more sophisticated solution concepts (cf. mixed
strategies). Not covered in this lecture.
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Simultaneous Moves
Example: Three-Person Cake Splitting Game

Setting:

Three players have to split a cake fairly.
Player 1 suggest split: shares x1,x2,x3 ∈ [0,1] s.t.
x1 + x2 + x3 = 1.
Then players 2 and 3 simultaneously and independently
decide whether to accept (“y”) or reject (“n”) the
suggested splitting.
If both accept, each player i gets his allotted share (utility
xi). Otherwise, no player gets anything (utility 0).

SS 2019 B. Nebel, R. Mattmüller – Game Theory 58 / 68



Motivation

Definitions

Solution
Concepts

One-
Deviation
Property

Kuhn’s
Theorem

Two
Extensions
Simultaneous
Moves

Chance

Summary

Simultaneous Moves
Example: Three-Person Cake Splitting Game

Formally:

N = {1,2,3}
X = {(x1,x2,x3) ∈ [0,1]3 |x1 + x2 + x3 = 1}
H = {〈〉}∪{〈x〉 |x ∈ X}∪{〈x,z〉 |x ∈ X ,z ∈ {y,n}×{y,n}}

P(〈〉) = {1}
P(〈x〉) = {2,3} for all x ∈ X

ui(〈x,z〉) =

{
0 if z ∈ {(y,n), (n,y), (n,n)}
xi if z = (y,y).

for all i ∈ N
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Simultaneous Moves
Example: Three-Person Cake Splitting Game

Subgame-perfect equilibria:
Subgames after legal split (x1,x2,x3) by player 1:

NE (y,y) (both accept)
NE (n,n) (neither accepts)
If x2 = 0, NE (n,y) (only player 3 accepts)
If x3 = 0, NE (y,n) (only player 2 accepts)
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Simultaneous Moves
Example: Three-Person Cake Splitting Game

Subgame-perfect equilibria (ctd.):
Entire game:
Let s2 and s3 be any two strategies of players 2 and 3
such that for all splits x ∈ X the profile (s2(〈x〉),s3(〈x〉)) is
one of the NEs from above.
Let Xy = {x ∈ X |s2(〈x〉) = s3(〈x〉) = y} be the set of splits
accepted under s2 and s3. Distinguish three cases:

Xy = /0 or x1 = 0 for all x ∈ Xy. Then (s1,s2,s3) is a
subgame-perfect equilibrium for any possible s1.
Xy 6= /0 and there are splits xmax = (x1,x2,x3) ∈ Xy that
maximize x1 > 0. Then (s1,s2,s3) is a subgame-perfect
equilibrium if and only if s1(〈〉) is such a split xmax.
Xy 6= /0 and there are no splits (x1,x2,x3) ∈ Xy that
maximize x1. Then there is no subgame-perfect
equilibrium, in which player 2 follows strategy s2 and
player 3 follows strategy s3.
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Chance Moves

Definition
An extensive game with chance moves is a tuple
Γ = 〈N,H,P, fc, (ui)i∈N〉, where

N, A, H and ui are defined as before,
the player function P : H \Z → N∪{c} can also take the
value c for a chance node, and
for each h ∈ H \Z with P(h) = c, the function fc(·|h) is a
probability distribution on A(h) such that the probability
distributions for all h ∈ H are independent of each other.
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Chance Moves

Intended meaning of chance moves: In chance node, an
applicable action is chosen randomly with probability
according to fc.
Strategies: Defined as before.
Outcome: For a given strategy profile, the outcome is a
probability distribution on the set of terminal histories.
Payoffs: For player i, Ui is the expected payoff (with
weights according to outcome probabilities).
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Chance Moves

Example
P(〈〉) = 1 (2,3)

P(〈A〉) = c (1,4)

(0,6)

fc(D|〈A〉) = 1
2 D

(2,2)

E
fc(E|〈A〉) = 1

2

A

P(〈B〉) = c(2,3)

P(〈B,F〉) = 2 (0,3)

(0,3)

H

(2,2)

I

fc(F |〈B〉) = 1
3 F

P(〈B,G〉) = 2(3,3)

(4,1)

K

(3,3)

L

G fc(G|〈B〉) = 2
3

B
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Chance Moves
One-Deviation Property and Kuhn’s Theorem

Remark:
The one-deviation property and Kuhn’s theorem still hold in the
presence of chance moves. When proving Kuhn’s theorem,
expected utilities have to be used.
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Summary

For finite-horizon extensive games, it suffices to consider
local deviations when looking for better strategies.
For infinite-horizon games, this is not true in general.
Every finite extensive game has a subgame-perfect
equilibrium.
This does not generally hold for infinite games, no matter
is game is infinite due to infinite branching factor or
infinitely long histories (or both).

With chance moves, one deviation property and Kuhn’s
theorem still hold.
With simultaneous moves, Kuhn’s theorem no longer
holds.
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