Game Theory

3. Mixed Strategies

N N EBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2019

ZE ZE

- Definitions
- Support Lemma

Mixed Strategies

Definitions Support Lemm

Nash's Theorem

Correlated Equilibria

Observation: Not every strategic game has a pure-strategy Nash equilibrium (e. g. matching pennies).

Question:

- Can we do anything about that?
- Which strategy to play then?

Idea: Consider randomized strategies.

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated Equilibria

FREE

Notation

Let X be a set.

Then $\Delta(X)$ denotes the set of probability distributions over X.

That is, each $p \in \Delta(X)$ is a mapping $p : X \to [0,1]$ with

$$\sum_{x\in X}p(x)=1.$$

Mixed Strategies Definitions

Support Lem

Nash's Theorem

Correlated Equilibria

FREIBUR

A mixed strategy is a strategy where a player is allowed to randomize his action (throw a dice mentally and then act according to what he has decided to do for each outcome).

Definition (Mixed strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A mixed strategy of player i in G is a probability distribution $\alpha_i \in \Delta(A_i)$ over player i's actions.

For $a_i \in A_i$, $\alpha_i(a_i)$ is the probability for playing a_i .

Terminology: When we talk about strategies in A_i specifically, to distinguish them from mixed strategies, we sometimes also call them pure strategies.

Mixed Strategies

Nach'e

Nash's Theorem

Correlated Equilibria

Definition (Mixed strategy profile)

A profile $\alpha = (\alpha_i)_{i \in N} \in \prod_{i \in N} \Delta(A_i)$ of mixed strategies induces a probability distribution p_{α} over $A = \prod_{i \in N} A_i$ as follows:

$$p_{\alpha}(a) = \prod_{i \in N} \alpha_i(a_i).$$

For $A' \subseteq A$, we define

$$p_{\alpha}(A') = \sum_{a \in A'} p_{\alpha}(a) = \sum_{a \in A'} \prod_{i \in N} \alpha_i(a_i).$$

Mixed Strategies

Definitions Support Lemm

Nash's Theorem

Correlated Equilibria

FREIBU

Notation

Since each pure strategy $a_i \in A_i$ is equivalent to its induced mixed strategy \hat{a}_i

$$\hat{a}_i(a_i') = \begin{cases} 1 & \text{if } a_i' = a_i \\ 0 & \text{otherwise,} \end{cases}$$

we sometimes abuse notation and write a_i instead of \hat{a}_i .

Mixed Strategies

Support Lemn

Nash's Theorem

Correlated Equilibria

Example (Mixed strategies for matching pennies)

	Н	T
Н	1,-1	-1, 1
Τ	-1, 1	1,-1

Definitions

Nash's Theorem

Summary

$$\alpha = (\alpha_1, \alpha_2), \quad \alpha_1(H) = 2/3, \quad \alpha_1(T) = 1/3, \quad \alpha_2(H) = 1/3, \quad \alpha_2(T) = 2/3.$$

This induces a probability distribution over $\{H, T\} \times \{H, T\}$:

$$\begin{split} p_{\alpha}(H,H) &= \alpha_{1}(H) \cdot \alpha_{2}(H) = \frac{2}{9}, & u_{1}(H,H) = +1, \\ p_{\alpha}(H,T) &= \alpha_{1}(H) \cdot \alpha_{2}(T) = \frac{4}{9}, & u_{1}(H,T) = -1, \\ p_{\alpha}(T,H) &= \alpha_{1}(T) \cdot \alpha_{2}(H) = \frac{1}{9}, & u_{1}(T,H) = -1, \\ p_{\alpha}(T,T) &= \alpha_{1}(T) \cdot \alpha_{2}(T) = \frac{2}{9}, & u_{1}(T,T) = +1. \end{split}$$

Expected Utility

FREIBUR

Definition (Expected utility)

Let $\alpha \in \prod_{i \in N} \Delta(A_i)$ be a mixed strategy profile.

The expected utility of α for player i is

$$U_i(\alpha) = U_i\left((\alpha_j)_{j \in N}\right) := \sum_{a \in A} p_\alpha(a) \ u_i(a) = \sum_{a \in A} \bigg(\prod_{j \in N} \alpha_j(a_j)\bigg) u_i(a).$$

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated Equilibria

Summary

Example (Mixed strategies for matching pennies (ctd.))

The expected utilities for player 1 and player 2 are

$$U_1(\alpha_1, \alpha_2) = -1/9$$

and

$$U_2(\alpha_1, \alpha_2) = +1/9.$$

Expected Utility

Remark: The expected utility functions U_i are linear in all mixed strategies.

Proposition

Let $\alpha \in \prod_{i \in \mathcal{N}} \Delta(A_i)$ be a mixed strategy profile, $\beta_i, \gamma_i \in \Delta(A_i)$ mixed strategies, and $\lambda \in [0, 1]$. Then

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) = \lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i).$$

Moreover,

$$U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) \cdot U_i(\alpha_{-i}, a_i)$$

Proof.

Homework.

Definitions

Theorem

FREIBU

Definition (Mixed extension)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

The mixed extension of G is the game $\langle N, (\Delta(A_i))_{i \in N}, (U_i)_{i \in N} \rangle$ where

- lacktriangle $\Delta(A_i)$ is the set of probability distributions over A_i and
- $U_i: \prod_{j\in N} \Delta(A_j) \to \mathbb{R}$ assigns to each mixed strategy profile α the expected utility for player i according to the induced probability distribution p_{α} .

Mixed Strategies Definitions

Support Lemn

Nash's Theorem

Correlated Equilibria

Nash Equilibria in Mixed Strategies

FREIBUR

Definition (Nash equilibrium in mixed strategies) Let *G* be a strategic game.

A Nash equilibrium in mixed strategies (or mixed-strategy Nash equilibrium) of *G* is a Nash equilibrium in the mixed extension of *G*.

Mixed Strategies Definitions

Support Lemm

Nash's Theorem

Correlated

Support

FREIBU

Intuition:

- It does not make sense to assign positive probability to a pure strategy that is not a best response to what the other players do.
- Claim: A profile of mixed strategies α is a Nash equilibrium if and only if everyone only plays best pure responses to what the others play.

Definition (Support)

Let α_i be a mixed strategy.

The support of α_i is the set

of actions played with nonzero probability.

Nash's

Correlated Equilibria

Summary

 $supp(\alpha_i) = \{a_i \in A_i \mid \alpha_i(a_i) > 0\}$

Lemma (Support lemma)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a finite strategic game.

Then $\alpha^* \in \prod_{i \in N} \Delta(A_i)$ is a mixed-strategy Nash equilibrium in G if and only if for every player $i \in N$, every pure strategy in the support of α_i^* is a best response to α_{-i}^* .

For a single player–given all other players stick to their mixed strategies–it does not make a difference whether he plays the mixed strategy or whether he plays any single pure strategy from the support of the mixed strategy.

Mixed Strategies Definitions Support Lemma

Nash's

Correlated Equilibria

Summarv

Example (Support lemma)

Matching pennies, strategy profile $\alpha = (\alpha_1, \alpha_2)$ with

$$\alpha_1(H) = \frac{2}{3}$$
, $\alpha_1(T) = \frac{1}{3}$, $\alpha_2(H) = \frac{1}{3}$, and $\alpha_2(T) = \frac{2}{3}$.

For α to be a Nash equilibrium, both actions in $supp(\alpha_2) = \{H, T\}$ have to be best responses to α_1 . Are they?

$$U_{2}(\alpha_{1}, H) = \alpha_{1}(H) \cdot u_{2}(H, H) + \alpha_{1}(T) \cdot u_{2}(T, H)$$

$$= \frac{2}{3} \cdot (-1) + \frac{1}{3} \cdot (+1) = -\frac{1}{3},$$

$$U_{2}(\alpha_{1}, T) = \alpha_{1}(H) \cdot u_{2}(H, T) + \alpha_{1}(T) \cdot u_{2}(T, T)$$

$$= \frac{2}{3} \cdot (+1) + \frac{1}{3} \cdot (-1) = \frac{1}{3}.$$

 $H \in supp(\alpha_2)$, but $H \notin B_2(\alpha_1)$. α can not be a Nash equilibrium. Support Lemma

Summary

SS 2019

Mixed

Proof.

"⇒": Let α^* be a Nash equilibrium with $a_i \in supp(\alpha_i^*)$.

Assume that a_i is not a best response to α_{-i}^* . Because U_i is linear, player i can improve his utility by shifting probability in α_i^* from a_i to a better response.

This makes the modified α_i^* a better response than the original α_i^* , i. e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.

Mixed Strategies Definitions Support Lemma

Nash's

Correlated Equilibria

FREIBU

Proof (ctd.)

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.

Because U_i is linear, there must be a pure strategy $a'_i \in supp(\alpha'_i)$ that has higher utility than some pure strategy $a''_i \in supp(\alpha^*_i)$.

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α_{-i}^* .

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Computing Mixed-Strategy Nash Equilibria

Example (Mixed-strategy Nash equilibria in BoS)

	В	S
В	2,1	0,0
S	0,0	1,2

We already know: (B,B) and (S,S) are pure Nash equilibria.

Possible supports (excluding "pure-vs-pure" strategies) are:

$$\{B\} \text{ vs. } \{B,S\}, \quad \{S\} \text{ vs. } \{B,S\}, \quad \{B,S\} \text{ vs. } \{B\}, \\ \{B,S\} \text{ vs. } \{S\} \qquad \text{and} \qquad \{B,S\} \text{ vs. } \{B,S\}$$

Observation: In Bach or Stravinsky, pure strategies have unique best responses. Therefore, there can be no Nash equilibria of "pure-vs-strictly-mixed" type.

Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

Computing Mixed-Strategy Nash Equilibria

N

Example (Mixed-strategy Nash equilibria in BoS (ctd.))

Consequence: Only need to search for additional Nash equilibria with support sets $\{B,S\}$ vs. $\{B,S\}$. Assume that (α_1^*,α_2^*) is a Nash equilibrium with $0<\alpha_1^*(B)<1$ and $0<\alpha_2^*(B)<1$. Then

$$U_1(B, \alpha_2^*) = U_1(S, \alpha_2^*)$$

$$\Rightarrow \qquad 2 \cdot \alpha_2^*(B) + 0 \cdot \alpha_2^*(S) = 0 \cdot \alpha_2^*(B) + 1 \cdot \alpha_2^*(S)$$

$$\Rightarrow \qquad 2 \cdot \alpha_2^*(B) = 1 - \alpha_2^*(B)$$

$$\Rightarrow \qquad 3 \cdot \alpha_2^*(B) = 1$$

$$\Rightarrow \qquad \alpha_2^*(B) = 1/3 \quad (\text{and } \alpha_2^*(S) = 2/3)$$

Similarly, we get $\alpha_1^*(B) = 2/3$ and $\alpha_1^*(S) = 1/3$. The payoff profile of this equilibrium is (2/3, 2/3). Mixed Strategies Definitions Support Lemma

Nash's Theorem

Correlated Equilibria

FREBU

Remark

Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T,B\}$ and $A_2 = \{L,R\}$ be a two-player game with two actions each, and (T,α_2^*) with $0 < \alpha_2^*(L) < 1$ be a Nash equilibrium of G.

Then at least one of the profiles (T,L) and (T,R) is also a Nash equilibrium of G.

Reason: Both L and R are best responses to T. Assume that T was neither a best response to L nor to R. Then B would be a better response than T both to L and to R.

With the linearity of U_1 , B would also be a better response to α_2^* than T is. Contradiction.

Mixed Strategies

Support Lemma
Nash's
Theorem

Correlated Equilibria

UNI

Example

Consider the Nash equilibrium α^* = (α_1^*, α_2^*) with

$$\alpha_1^*(T) = 1, \qquad \alpha_1^*(B) = 0, \qquad \alpha_2^*(L) = \frac{1}{10}, \qquad \alpha_2^*(R) = \frac{9}{10}$$

in the following game:

	L	R
Т	1, 1	1, 1
В	2, 2	-5, -5

Here, (T,R) is also a Nash equilibrium.

Nash's Theorem

Correlated

2 Nash's Theorem

- Definitions
- Kakutani's Fixpoint Theorem
- Proof of Nash's Theorem

Mixed Strategies

Nash's Theorem

Definitions

Kakutani's Fivnois

Theorem Proof of Nash's

Theorem

Correlated Equilibria

Nash's Theorem

FREIB -

Motivation: When does a strategic game have a mixed-strategy Nash equilibrium?

In the previous chapter, we discussed necessary and sufficient conditions for the existence of Nash equilibria for the special case of zero-sum games. Can we make other claims? Mixed Strategies

Nash's Theorem

Definition

Kakutani's Fixpo

Proof of Nash's

Correlated

Every finite strategic game has a mixed-strategy Nash equilibrium.

Proof sketch.

Consider the set-valued function of best responses $B: \mathbb{R}^{\sum_i |A_i|} \to 2^{\mathbb{R}^{\sum_i |A_i|}}$ with

$$B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i}).$$

A mixed strategy profile α is a fixed point of B if and only if $\alpha \in B(\alpha)$ if and only if α is a mixed-strategy Nash equilibrium. The graph of B has to be connected. Then there is at least one point on the fixpoint diagonal.

Mixed Strategies

Nash's Theorem

Definitions

Theorem

Proof of Nash's Theorem

Correlated Equilibria

Outline for the formal proof:

- Review of necessary mathematical definitions
- Statement of a fixpoint theorem used to prove Nash's theorem (without proof)
 - Subsection "Kakutani's Fixpoint Theorem"
- Proof of Nash's theorem using fixpoint theorem
 - Subsection "Proof of Nash's Theorem"

Mixed Strategies

Nash's Theorem

Definitions

Theorem

Proof of Nash's Theorem

Correlated Equilibria

FREIB

Definition

A set $X \subseteq \mathbb{R}^n$ is closed if X contains all its limit points, i. e., if $(x_k)_{k \in \mathbb{N}}$ is a sequence of elements in X and $\lim_{k \to \infty} x_k = x$, then also $x \in X$.

Example

Closed:

Not closed:

Mixed Strategies

Nash's Theorem

Definitions

Theorem

Correlated

Definition

A set $X \subseteq \mathbb{R}^n$ is bounded if for each i = 1, ..., n there are lower and upper bounds $a_i, b_i \in \mathbb{R}$ such that

$$X \subseteq \prod_{i=1}^n [a_i, b_i].$$

Example

Bounded:

Not bounded:

Mixed Strategies

Nash's Theorem

Definitions

Theorem

Correlated

Nash's Theorem

Definitions Kakutani's Fixpoi

Theorem Proof of Nash's

Theorem Correlated

Summary

Definition

A set $X \subseteq \mathbb{R}^n$ is convex if for all $x, y \in X$ and all $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in X$$
.

Example

Convex:

Not convex:

Definition

Definitions

For a function $f: X \to 2^X$, the graph of f is the set

Graph(
$$f$$
) = {(x , y) | $x \in X$, $y \in f(x)$ }.

Mixed Strategies

Nash's Theorem

Definitions

Kakutani's Fixpoi
Theorem

Proof of Nash's Theorem

Correlated Equilibria

Theorem (Kakutani's fixpoint theorem)

Let $X \subseteq \mathbb{R}^n$ be a nonempty, closed, bounded and convex set and let $f: X \to 2^X$ be a function such that

- \blacksquare for all $x \in X$, the set $f(x) \subseteq X$ is nonempty and convex, and
- Graph(f) is closed.

Then there is an $x \in X$ with $x \in f(x)$, i. e., f has a fixpoint.

Proof.

See Shizuo Kakutani, A generalization of Brouwer's fixed point theorem, 1941, or your favorite advanced calculus textbook, or the Internet.

For German speakers: Harro Heuser, Lehrbuch der Analysis, Teil 2, also has a proof (Abschnitt 232).

Mixed Strategies

Theorem

Kakutani's Fixpoint

Proof of Nash's Theorem

Correlated Equilibria

Nash's Theorem

Kakutani's Fixpoint Theorem

UNI FREIBU

Example

Let X = [0, 1].

Kakutani's theorem applicable:

Kakutani's theorem not applicable:

Mixed Strategies

Nash's

Definitions

Kakutani's Fixpoint Theorem

Proof of Nash's Theorem

Correlated Equilibria

Proof.

Apply Kakutani's fixpoint theorem using $X = \mathcal{A} = \prod_{i \in N} \Delta(A_i)$ and f = B, where $B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i})$.

We have to show:

- 2 \(\alpha \) is closed,
- \Im \mathscr{A} is bounded,
- 4 \alpha is convex,
- \blacksquare $B(\alpha)$ is nonempty for all $\alpha \in \mathscr{A}$,
- $B(\alpha)$ is convex for all $\alpha \in \mathcal{A}$, and
- Graph(B) is closed.

Mixed Strategie

Nash's Theorem

Definitions

Theorem

Proof of Nash's Theorem

Correlated Equilibria

Some notation:

- Assume without loss of generality that $N = \{1, ..., n\}$.
- A profile of mixed strategies can be written as a vector of $M = \sum_{i \in N} |A_i|$ real numbers in the interval [0, 1] such that numbers for the same player add up to 1.

For example, $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_1(T) = 0.7$, $\alpha_1(M) = 0.0$, $\alpha_1(B) = 0.3$, $\alpha_2(L) = 0.4$, $\alpha_2(R) = 0.6$ can be seen as the vector

$$(\underbrace{0.7,\ 0.0,\ 0.3}_{\alpha_1},\ \underbrace{0.4,\ 0.6}_{\alpha_2})$$

This allows us to interpret the set \mathscr{A} of mixed strategy profiles as a subset of \mathbb{R}^M .

Mixed Strategies

Theorem

Theorem
Proof of Nash's

Theorem

.

M nonempty: Trivial.
 A contains the tuple

$$(1, \underbrace{0, \dots, 0}_{|A_1|-1 \text{ times}}, \dots, 1, \underbrace{0, \dots, 0}_{|A_n|-1 \text{ times}}).$$

2 \mathscr{A} closed: Let $\alpha_1, \alpha_2, \ldots$ be a sequence in \mathscr{A} that converges to $\lim_{k\to\infty}\alpha_k=\alpha$. Suppose $\alpha\notin\mathscr{A}$. Then either there is some component of α that is less than zero or greater than one, or the components for some player i add up to a value other than one.

Since α is a limit point, the same must hold for some α_k in the sequence. But then, $\alpha_k \notin \mathcal{A}$, a contradiction. Hence \mathcal{A} is closed.

Nash's

Definitions

Proof of Nash's

Correlated Equilibria

- 4 \mathscr{A} convex: Let $\alpha, \beta \in \mathscr{A}$ and $\lambda \in [0,1]$, and consider $\gamma = \lambda \alpha + (1 \lambda)\beta$. Then

$$\min(\gamma) = \min(\lambda \alpha + (1 - \lambda)\beta)$$

$$\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta)$$

$$\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0,$$

and similarly, $max(\gamma) \leq 1$.

Hence, all entries in γ are still in [0, 1].

Mixed Strategies

Nash's Theorem

Kakutani's Fixpoin

Proof of Nash's

Correlated Equilibria

$$\sum \tilde{\gamma} = \sum (\lambda \, \tilde{\alpha} + (1 - \lambda) \, \tilde{\beta})$$

$$= \lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$$

$$= \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1.$$

Hence, all probabilities for player i in γ still sum up to 1. Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex.

Mixed Strategies

Nash's Theorem

Definitions

Proof of Nash's

Correlated Equilibria

Proof (ctd.)

5 $B(\alpha)$ nonempty: For a fixed α_{-i} , U_i is linear in the mixed strategies of player i, i. e., for β_i , $\gamma_i \in \Delta(A_i)$,

$$U_{i}(\alpha_{-i}, \lambda \beta_{i} + (1 - \lambda)\gamma_{i}) = \lambda U_{i}(\alpha_{-i}, \beta_{i}) + (1 - \lambda)U_{i}(\alpha_{-i}, \gamma_{i})$$
(1)

for all $\lambda \in [0, 1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in N$, and thus $B(\alpha) \neq \emptyset$.

Mixed Strategies

Theorem

Kakutani's Fixpoi

Proof of Nash's

Correlated Equilibria

β(α) convex: This follows, since each $B_i(\alpha_{-i})$ is convex. To see this, let $\alpha'_i, \alpha''_i \in B_i(\alpha_{-i})$.

Then
$$U_i(\alpha_{-i}, \alpha_i') = U_i(\alpha_{-i}, \alpha_i'')$$
.

With Equation (1), this implies

$$\lambda \alpha_i' + (1 - \lambda) \alpha_i'' \in B_i(\alpha_{-i}).$$

Hence, $B_i(\alpha_{-i})$ is convex.

Graph(B) closed: Let (α^k, β^k) be a convergent sequence in Graph(B) with $\lim_{k\to\infty} (\alpha^k, \beta^k) = (\alpha, \beta)$.

So,
$$\alpha^k, \beta^k, \alpha, \beta \in \prod_{i \in N} \Delta(A_i)$$
 and $\beta^k \in B(\alpha^k)$.

We need to show that $(\alpha, \beta) \in Graph(B)$, i. e., that $\beta \in B(\alpha)$.

Nash's

Definitions

Theorem

Proof of Nash's Theorem

Correlated Equilibria

Proof (ctd.)

$$\begin{split} U_{i} \big(\alpha_{-i}, \beta_{i}\big) &\overset{\text{(D)}}{=} U_{i} \big(\lim_{k \to \infty} (\alpha_{-i}^{k}, \beta_{i}^{k})\big) \\ &\overset{\text{(C)}}{=} \lim_{k \to \infty} U_{i} \big(\alpha_{-i}^{k}, \beta_{i}^{k}\big) \\ &\overset{\text{(B)}}{\geq} \lim_{k \to \infty} U_{i} \big(\alpha_{-i}^{k}, \beta_{i}^{\prime}\big) \quad \text{for all } \beta_{i}^{\prime} \in \Delta(A_{i}) \\ &\overset{\text{(C)}}{=} U_{i} \big(\lim_{k \to \infty} \alpha_{-i}^{k}, \beta_{i}^{\prime}\big) \quad \text{for all } \beta_{i}^{\prime} \in \Delta(A_{i}) \\ &\overset{\text{(D)}}{=} U_{i} \big(\alpha_{-i}, \beta_{i}^{\prime}\big) \quad \text{for all } \beta_{i}^{\prime} \in \Delta(A_{i}). \end{split}$$

(D): def. α_i , β_i ; (C) continuity; (B) β_i^k best response to α_{-i}^k .

Nash's

Definitions

Theorem

Proof of Nash's Theorem

Correlated Equilibria

Proof (ctd.)

Proof

7 *Graph*(B) closed (ctd.): It follows that β_i is a best response to α_{-i} for all $i \in N$.

Thus, $\beta \in B(\alpha)$ and finally $(\alpha, \beta) \in Graph(B)$.

Therefore, all requirements of Kakutani's fixpoint theorem are satisfied.

Applying Kakutani's theorem establishes the existence of a fixpoint of *B*, which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

Mixed Strategies

Nash's

Definitions

Proof of Nash's

Correlated

Equilibria

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Correlated Equilibria

Recall: There are three Nash equilibria in Bach or Stravinsky

- \blacksquare (B,B) with payoff profile (2,1)
- \blacksquare (S,S) with payoff profile (1,2)
- \blacksquare (α_1^*, α_2^*) with payoff profile (2/3, 2/3) where

$$\alpha_1^*(B) = 2/3, \ \alpha_1^*(S) = 1/3,$$

$$\alpha_2^*(B) = 1/3, \ \alpha_2^*(S) = 2/3.$$

Idea: Use a publicly visible coin toss to decide which action from a mixed strategy is played. This can lead to higher payoffs.

Strategie

Theorem

Correlated Equilibria

Example (Correlated equilibrium in BoS)

With a fair coin that both players can observe, the players can agree to play as follows:

- If the coin shows heads, both play B.
- \blacksquare If the coin shows tails, both play S.

This is stable in the sense that no player has an incentive to deviate from this agreed-upon rule, as long as the other player keeps playing his/her strategy (cf. definition of Nash equilibria).

Expected payoffs: (3/2, 3/2) instead of (2/3, 2/3).

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Observations and Information Partitions

We assume that observations are made based on a finite probability space (Ω, π) , where Ω is a set of states and π is a probability measure on Ω .

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player i an information partition $\mathcal{P}_i = \{P_{i1}, P_{i2}, \dots, P_{ik_i}\}$. This means that $\bigcup \mathcal{P}_i = \Omega$ for all i, and for all $P_j, P_k \in \mathcal{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.$$

We say that a function $f: \Omega \to X$ respects an information partition for player i if $f(\omega) = f(\omega')$ whenever $\omega, \omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: f respects \mathcal{P}_1 if f(y) = f(z).

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Correlated Equilibria - Formally

FREIBU

Definition

A correlated equilibrium of a strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ consists of

- \blacksquare a finite probability space (Ω, π) ,
- for each player $i \in N$ an information partition \mathcal{P}_i of Ω ,
- for each player $i \in N$ a function $\sigma_i : \Omega \to A_i$ that respects \mathscr{P}_i (σ_i is player i's strategy)

such that for every $i \in N$ and every function $\tau_i : \Omega \to A_i$ that respects \mathscr{P}_i (i.e. for every possible strategy of player i) we have

$$\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega)). \tag{2}$$

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Example

i		œ	
Ì		\Box	
ä		፳	
ì	_	ш	_
	=	ш	
		$\overline{\mathbf{z}}$	
		匪	

	L	R
Т	6,6	2,7
В	7,2	0,0

Mixed Strategies

Nash's Theorem

> Correlated Equilibria

Summary

Equilibria: (T,R) with (2,7), (B,L) with (7,2), and mixed $((\frac{2}{3},\frac{1}{3}),(\frac{2}{3},\frac{1}{3}))$ with $(4+\frac{2}{3},4+\frac{2}{3})$.

Assume
$$\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$$

Assume further $\mathscr{P}_1 = \{\{x\}, \{y, z\}\}, \mathscr{P}_2 = \{\{x, y\}, \{z\}\}.$
Set $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R.$

Then both player play optimally and get a payoff profile of (5,5).

Connection to Nash Equilibria

FREIBU

Proposition

For every mixed strategy Nash equilibrium α of a finite strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$, there is a correlated equilibrium $\langle (\Omega, \pi), (\mathscr{P}_i), (\sigma_i) \rangle$ in which for each player i the distribution on A_i induced by σ_i is α_i .

This means that correlated equilibria are a generalization of Nash equilibria.

Mixed Strategies

Nash's Theorem

Correlated Equilibria

Proof.

Let $\Omega = A$ and define $\pi(a) = \prod_{j \in N} \alpha_j(a_j)$. For each player i, let $a \in P$ and $b \in P$ for $P \in \mathscr{P}_i$ if $a_i = b_i$. Define $\sigma_i(a) = a_i$ for each $a \in A$.

Then $\langle (\Omega,\pi),(\mathscr{P}_i),(\sigma_i)\rangle$ is a correlated equilibrium since the left hand side of (2) is the Nash equilibrium payoff and for each player i at least as good any other strategy τ_i respecting the information partition. Further, the distribution induced by σ_i is α_i .

Mixed Strategies

Nash's Theorem

Correlated Equilibria

FREIBU

Proposition

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game. Any convex combination of correlated equilibirum payoff profiles of G is a correlated equilibirum payoff profile of G.

Proof idea: From given equilibria and weighting factors, create a new one by combining them orthogonally, using the weighting factors.

Mixed Strategies

Nash's Theorem

Correlated Equilibria

т П П

Proof.

Let u^1,\ldots,u^K be the payoff profiles and let $(\lambda^1,\ldots,\lambda^K)\in\mathbb{R}^K$ with $\lambda^I\geq 0$ and $\sum_{l=1}^K\lambda^l=1$. For each I let $\langle(\Omega^I,\pi^I),(\mathscr{P}_i^I),(\sigma_i^I)\rangle$ be a correlated equilibrium generating payoff u^I . Wlog. assume all Ω^I 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where l is such that $\omega \in \Omega^l$. For each $i \in N$ let $\mathscr{P}_i = \bigcup_l \mathscr{P}_i^l$ and set $\sigma_i(\omega) = \sigma_i^l(\omega)$ where l is such that $\omega \in \Omega^l$.

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed Strategie

Nash's Theorem

Correlated Equilibria

Mixed

Strategies
Nash's
Theorem

Correlated Equilibria

- Mixed strategies allow randomization.
- Characterization of mixed-strategy Nash equilibria: players only play best responses with positive probability (support lemma).
- Nash's Theorem: Every finite strategic game has a mixed-strategy Nash equilibrium.
- Correlated equilibria can lead to higher payoffs.
- All Nash equilibria are correlated equilibria, but not vice versa.

Mixed Strategies

Nash's Theorem

Equilibria