Game Theory 3. Mixed Strategies

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2019

1 [Mixed Strategies](#page-1-0)

Mixed **[Strategies](#page-1-0)**

[Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

[Definitions](#page-2-0)

■ [Support Lemma](#page-12-0)

Observation: Not every strategic game has a pure-strategy Nash equilibrium (e. g. matching pennies).

Question:

- Can we do anything about that? \sim
- Which strategy to play then? T.

Idea: Consider randomized strategies.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0)

[Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Notation

Let *X* be a set.

Then ∆(*X*) denotes the set of probability distributions over *X*.

That is, each $p \in \Delta(X)$ is a mapping $p : X \to [0,1]$ with

$$
\sum_{x\in X}p(x)=1.
$$

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0)

[Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

A mixed strategy is a strategy where a player is allowed to randomize his action (throw a dice mentally and then act according to what he has decided to do for each outcome).

Definition (Mixed strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A mixed strategy of player *i* in *G* is a probability distribution $\alpha_i \in \Delta(A_i)$ over player *i*'s actions.

For $a_i \in A_i$, $\alpha_i(a_i)$ is the probability for playing a_i .

Terminology: When we talk about strategies in *Aⁱ* specifically, to distinguish them from mixed strategies, we sometimes also call them pure strategies.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Definition (Mixed strategy profile)

A profile $\alpha = (\alpha_i)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} \Delta(A_i)$ of mixed strategies induces a probability distribution p_α over $A = \prod_{i \in N} A_i$ as follows:

$$
p_\alpha(a)=\prod_{i\in N}\alpha_i(a_i).
$$

For $A' \subseteq A$, we define

$$
\rho_\alpha(A')=\sum_{a\in A'}\rho_\alpha(a)=\sum_{a\in A'}\prod_{i\in N}\alpha_i(a_i).
$$

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Notation

Since each pure strategy $a_i \in A_i$ is equivalent to its induced mixed strategy *a*ˆ*ⁱ*

$$
\hat{a}_i(a'_i) = \begin{cases} 1 & \text{if } a'_i = a_i \\ 0 & \text{otherwise,} \end{cases}
$$

we sometimes abuse notation and write a_i instead of \hat{a}_i .

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Example (Mixed strategies for matching pennies)

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0) Nash's

[Theorem](#page-21-0) [Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

 $\alpha = (\alpha_1, \alpha_2), \ \alpha_1(H) = 2/3, \ \alpha_1(T) = 1/3, \ \alpha_2(H) = 1/3, \ \alpha_2(T) = 2/3.$

This induces a probability distribution over $\{H, T\} \times \{H, T\}$:

$$
\rho_{\alpha}(H,H) = \alpha_{1}(H) \cdot \alpha_{2}(H) = 2/9, \qquad u_{1}(H,H) = +1, \n\rho_{\alpha}(H,T) = \alpha_{1}(H) \cdot \alpha_{2}(T) = 4/9, \qquad u_{1}(H,T) = -1, \n\rho_{\alpha}(T,H) = \alpha_{1}(T) \cdot \alpha_{2}(H) = 1/9, \qquad u_{1}(T,H) = -1, \n\rho_{\alpha}(T,T) = \alpha_{1}(T) \cdot \alpha_{2}(T) = 2/9, \qquad u_{1}(T,T) = +1.
$$

Definition (Expected utility)

Let $\alpha \in \prod_{i \in \mathbb{N}} \Delta(A_i)$ be a mixed strategy profile. The expected utility of α for player *i* is

$$
U_i(\alpha) = U_i((\alpha_j)_{j \in N}) := \sum_{a \in A} p_{\alpha}(a) \ u_i(a) = \sum_{a \in A} \Big(\prod_{j \in N} \alpha_j(a_j) \Big) u_i(a).
$$

Example (Mixed strategies for matching pennies (ctd.))

The expected utilities for player 1 and player 2 are

$$
U_1(\alpha_1, \alpha_2) = -1/9
$$
 and $U_2(\alpha_1, \alpha_2) = +1/9$.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0)

[Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Remark: The expected utility functions *Uⁱ* are linear in all mixed strategies.

Proposition

Let $\alpha \in \prod_{i\in \mathcal{N}}\Delta(\mathcal{A}_i)$ be a mixed strategy profile, $\beta_i, \gamma_i \in \Delta(\mathcal{A}_i)$ mixed strategies, and $\lambda \in [0,1]$. Then

$$
U_i(\alpha_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)=\lambda U_i(\alpha_{-i},\beta_i)+(1-\lambda)U_i(\alpha_{-i},\gamma_i).
$$

Moreover,

$$
U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) \cdot U_i(\alpha_{-i}, a_i)
$$

Proof.

Homework.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0)

[Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Definition (Mixed extension)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

The mixed extension of *G* is the game $\langle N,(\Delta(A_i))_{i\in N},(U_i)_{i\in N}\rangle$ where

- ∆(*Ai*) is the set of probability distributions over *Aⁱ* and
- *Ui* : ∏*j*∈*^N* ∆(*Aj*) → R assigns to each mixed strategy profile α the expected utility for player *i* according to the induced probability distribution p_{α} .

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0) [Correlated](#page-40-0)

Equilibria

Definition (Nash equilibrium in mixed strategies)

Let *G* be a strategic game.

A Nash equilibrium in mixed strategies (or mixed-strategy Nash equilibrium) of *G* is a Nash equilibrium in the mixed extension of *G*.

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

 $supp(\alpha_i) = \{a_i \in A_i | \alpha_i(a_i) > 0\}$

of actions played with nonzero probability.

Intuition:

- It does not make sense to assign positive probability to a **I** pure strategy that is not a best response to what the other players do.
- Claim: A profile of mixed strategies α is a Nash equilibrium if and only if everyone only plays best pure responses to what the others play.

Definition (Support)

Let α_i be a mixed strategy.

The support of α_i is the set

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Lemma (Support lemma)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ *be a finite strategic game.*

Then α [∗] ∈ ∏*i*∈*^N* ∆(*Ai*) *is a mixed-strategy Nash equilibrium in G if and only if for every player i* ∈ *N, every pure strategy in the* \sup *support of* α_i^* *is a best response to* $\alpha_{-i}^*.$

For a single player–given all other players stick to their mixed strategies–it does not make a difference whether he plays the mixed strategy or whether he plays any single pure strategy from the support of the mixed strategy.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria [Summary](#page-50-0)**

Example (Support lemma)

Matching pennies, strategy profile $\alpha = (\alpha_1, \alpha_2)$ with

$$
\alpha_1(H) = 2/3
$$
, $\alpha_1(T) = 1/3$, $\alpha_2(H) = 1/3$, and $\alpha_2(T) = 2/3$.

For α to be a Nash equilibrium, both actions in *supp* $(\alpha_2) = \{H, T\}$ have to be best responses to α_1 . Are they?

$$
U_2(\alpha_1, H) = \alpha_1(H) \cdot u_2(H, H) + \alpha_1(T) \cdot u_2(T, H)
$$

= $2/3 \cdot (-1) + 1/3 \cdot (+1) = -1/3$,

$$
U_2(\alpha_1, T) = \alpha_1(H) \cdot u_2(H, T) + \alpha_1(T) \cdot u_2(T, T)
$$

= $2/3 \cdot (+1) + 1/3 \cdot (-1) = 1/3$.

 \Rightarrow *H* \in *Supp* (α_2) , but *H* \notin *B*₂ (α_1) . α can not be a Nash equilibrium.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria [Summary](#page-50-0)**

Proof.

"⇒": Let α* be a Nash equilibrium with a_i ∈ *supp*(α_i^*).

Assume that a_i is not a best response to α_{-i}^* . Because U_i is linear, player *i* can improve his utility by shifting probability in α_i^* from a_i to a better response.

This makes the modified α_i^* a better response than the original α_i^* , i. e., the original α_i^* was not a best response, which contradicts the assumption that α^* is a Nash equilibrium.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

" \Leftarrow ": Assume that α^* is not a Nash equilibrium.

Then there must be a player $i \in \mathcal{N}$ and a strategy α_i' such that $U_i(\alpha_{-i}^*,\alpha_i') > U_i(\alpha_{-i}^*,\alpha_i^*).$

Because U_i is linear, there must be a pure strategy $a'_i \in supp(\alpha'_i)$ that has higher utility than some pure strategy $a''_i \in \text{supp}(\alpha^*_i).$

Therefore, $supp(\alpha_i^*)$ does not only contain best responses to α_{-i}^* .

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Example (Mixed-strategy Nash equilibria in BoS)

We already know: (*B*,*B*) and (*S*,*S*) are pure Nash equilibria. Possible supports (excluding "pure-vs-pure" strategies) are:

{*B*} vs. {*B*,*S*}, {*S*} vs. {*B*,*S*}, {*B*,*S*} vs. {*B*}, ${B, S}$ vs. ${S}$ and ${B, S}$ vs. ${B, S}$

Observation: In Bach or Stravinsky, pure strategies have unique best responses. Therefore, there can be no Nash equilibria of "pure-vs-strictly-mixed" type.

[Theorem](#page-21-0) [Correlated](#page-40-0) **Equilibria [Summary](#page-50-0)**

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0) Nash's

Example (Mixed-strategy Nash equilibria in BoS (ctd.))

Consequence: Only need to search for additional Nash equilibria with support sets $\{B, S\}$ vs. $\{B, S\}$. Assume that (α_1^*,α_2^*) is a Nash equilibrium with $0<\alpha_1^*(B)< 1$ and $0 < \alpha^*_2(B) < 1$. Then

$$
U_1(B, \alpha_2^*) = U_1(S, \alpha_2^*)
$$
\n
$$
\Rightarrow \qquad 2 \cdot \alpha_2^*(B) + 0 \cdot \alpha_2^*(S) = 0 \cdot \alpha_2^*(B) + 1 \cdot \alpha_2^*(S)
$$
\n
$$
\Rightarrow \qquad 2 \cdot \alpha_2^*(B) = 1 - \alpha_2^*(B)
$$
\n
$$
\Rightarrow \qquad 3 \cdot \alpha_2^*(B) = 1
$$
\n
$$
\Rightarrow \qquad \alpha_2^*(B) = 1/3 \quad (\text{and } \alpha_2^*(S) = 2/3)
$$

Similarly, we get $\alpha_1^*(B) = \frac{2}{3}$ and $\alpha_1^*(S) = \frac{1}{3}$. The payoff profile of this equilibrium is $(2/3, 2/3)$.

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Remark

Let *G* = $\langle \{1,2\}, (A_i), (u_i) \rangle$ with $A_1 = \{T, B\}$ and $A_2 = \{L, R\}$ be a two-player game with two actions each, and $({\mathcal T}, \alpha_2^*)$ with $0<\alpha^*_2(L)<$ 1 be a Nash equilibrium of $G.$

Then at least one of the profiles (*T*,*L*) and (*T*,*R*) is also a Nash equilibrium of *G*.

Reason: Both *L* and *R* are best responses to *T*. Assume that *T* was neither a best response to *L* nor to *R*. Then *B* would be a better response than *T* both to *L* and to *R*.

With the linearity of U_1 , *B* would also be a better response to α_2^* than *T* is. Contradiction.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria [Summary](#page-50-0)**

Example

Consider the Nash equilibrium $\alpha^* = (\alpha_1^*, \alpha_2^*)$ with

 $\alpha_1^*(T) = 1, \alpha_1^*(B) = 0, \alpha_2^*(L) = \frac{1}{10}, \alpha_2^*(R) = \frac{9}{10}$

in the following game:

L R T 1, 1 1, 1 *B* 2, 2 −5,−5

Here, (*T*,*R*) is also a Nash equilibrium.

Mixed **[Strategies](#page-1-0)** [Definitions](#page-2-0) [Support Lemma](#page-12-0)

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

2 [Nash's Theorem](#page-21-0)

[Definitions](#page-25-0)

m. $\mathcal{L}_{\mathcal{A}}$ m.

[Kakutani's Fixpoint Theorem](#page-29-0) [Proof of Nash's Theorem](#page-31-0)

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Motivation: When does a strategic game have a mixed-strategy Nash equilibrium?

In the previous chapter, we discussed necessary and sufficient conditions for the existence of Nash equilibria for the special case of zero-sum games. Can we make other claims?

Theorem (Nash's theorem)

Every finite strategic game has a mixed-strategy Nash equilibrium.

Proof sketch.

Consider the set-valued function of best responses $B:\mathbb{R}^{\sum_{i}^{}|{\cal A}_{i}|} \rightarrow 2^{\mathbb{R}^{\sum_{i}^{}|{\cal A}_{i}|}}$ with

$$
B(\alpha)=\prod_{i\in N}B_i(\alpha_{-i}).
$$

A mixed strategy profile α is a fixed point of *B* if and only if $\alpha \in B(\alpha)$ if and only if α is a mixed-strategy Nash equilibrium.

The graph of *B* has to be connected. Then there is at least one point on the fixpoint diagonal.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

Outline for the formal proof:

- Review of necessary mathematical definitions \rightsquigarrow Subsection "Definitions"
- Statement of a fixpoint theorem used to prove Nash's theorem (without proof)
	- \rightsquigarrow Subsection "Kakutani's Fixpoint Theorem"
- **3** Proof of Nash's theorem using fixpoint theorem \rightsquigarrow Subsection "Proof of Nash's Theorem"

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) Equilibria

A set $X \subseteq \mathbb{R}^n$ is closed if X contains all its limit points, i. e., if $(X_k)_{k \in \mathbb{N}}$ is a sequence of elements in X and $\lim_{k \to \infty} X_k = X$, then also $x \in X$.

Example

Closed:

Not closed:

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

A set $X \subseteq \mathbb{R}^n$ is bounded if for each $i = 1, \ldots, n$ there are lower and upper bounds $a_i, b_i \in \mathbb{R}$ such that

$$
X\subseteq \prod_{i=1}^n [a_i,b_i].
$$

Example

Bounded: Not bounded:

Mixed **[Strategies](#page-1-0)**

> Nash's [Theorem](#page-21-0)

> > [Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

A set $X \subseteq \mathbb{R}^n$ is convex if for all $x, y \in X$ and all $\lambda \in [0,1]$,

$$
\lambda x+(1-\lambda)y\in X.
$$

Example

Convex: Not convex:

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Definition

For a function $f: X \rightarrow 2^X$, the graph of f is the set

Graph(*f*) = {(*x*, *y*)| $x \in X$, $y \in f(x)$ }.

Let X ⊆ R *ⁿ be a nonempty, closed, bounded and convex set* and let f : $X \rightarrow 2^X$ be a function such that

- *for all x* ∈ *X, the set f*(*x*) ⊆ *X is nonempty and convex, and*
- *Graph*(*f*) *is closed.*

Then there is an $x \in X$ *with* $x \in f(x)$, *i. e., f has a fixpoint.*

Proof.

See Shizuo Kakutani, A generalization of Brouwer's fixed point theorem, 1941, or your favorite advanced calculus textbook, or the Internet.

For German speakers: Harro Heuser, Lehrbuch der Analysis, Teil 2, also has a proof (Abschnitt 232).

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem [Proof of Nash's](#page-31-0)

Theorem

[Correlated](#page-40-0) Equilibria

Nash's Theorem Kakutani's Fixpoint Theorem

Example

Let $X = [0, 1]$. Kakutani's theorem applicable:

Kakutani's theorem not applicable:

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

Proof.

Apply Kakutani's fixpoint theorem using $X = \mathcal{A} = \prod_{i \in N} \Delta(A_i)$ and $f = B$, where $B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i}).$

We have to show:

- $\blacksquare \mathscr{A}$ is nonempty,
- $\mathscr A$ is closed.
- $\overline{3}$ $\mathscr A$ is bounded.
- $\mathscr A$ is convex.
- 5 *B*(α) is nonempty for all $\alpha \in \mathcal{A}$,
- 6 $B(\alpha)$ is convex for all $\alpha \in \mathcal{A}$, and
- 7 *Graph*(*B*) is closed.

Mixed

[Strategies](#page-1-0)

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

Some notation:

- Assume without loss of generality that $N = \{1, \ldots, n\}$.
- A profile of mixed strategies can be written as a vector of M = $\sum_{i\in \mathcal{N}} |A_i|$ real numbers in the interval [0,1] such that numbers for the same player add up to 1.

For example, $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_1(T) = 0.7$, $\alpha_1(M) = 0.0$, $\alpha_1(B) = 0.3$, $\alpha_2(L) = 0.4$, $\alpha_2(R) = 0.6$ can be seen as the vector

$$
(\underbrace{0.7, 0.0, 0.3}_{\alpha_1}, \underbrace{0.4, 0.6}_{\alpha_2})
$$

This allows us to interpret the set $\mathscr A$ of mixed strategy **College** profiles as a subset of \mathbb{R}^M .

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

1 $\mathscr A$ nonempty: Trivial. $\mathscr A$ contains the tuple

$$
(1, \underbrace{0,\ldots,0}_{|A_1|-1 \text{ times}},\ldots,1,\underbrace{0,\ldots,0}_{|A_n|-1 \text{ times}}).
$$

2 $\mathscr A$ closed: Let $\alpha_1, \alpha_2, \ldots$ be a sequence in $\mathscr A$ that converges to $\lim_{k\to\infty} \alpha_k = \alpha$. Suppose $\alpha \notin \mathcal{A}$. Then either there is some component of α that is less than zero or greater than one, or the components for some player *i* add up to a value other than one.

Since α is a limit point, the same must hold for some α_k in the sequence. But then, $\alpha_k \notin \mathcal{A}$, a contradiction. Hence $\mathscr A$ is closed.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) Equilibria

- $\overline{3}$ $\mathscr A$ bounded: Trivial. All entries are between 0 and 1, i.e., $\mathscr A$ is bounded by $[0,1]^M$.
- 4 $\mathcal A$ convex: Let $\alpha, \beta \in \mathcal A$ and $\lambda \in [0,1]$, and consider $\gamma = \lambda \alpha + (1 - \lambda) \beta$. Then

$$
\begin{aligned} \min(\gamma) &= \min(\lambda \, \alpha + (1 - \lambda)\beta) \\ &\geq \lambda \cdot \min(\alpha) + (1 - \lambda) \cdot \min(\beta) \\ &\geq \lambda \cdot 0 + (1 - \lambda) \cdot 0 = 0, \end{aligned}
$$

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

and similarly, max(γ) \leq 1.

Hence, all entries in γ are still in [0, 1].

 $\mathscr A$ convex (ctd.): Let $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$ be the sections of α , β and γ , respectively, that determine the probability distribution for player *i*. Then

$$
\sum \tilde{\gamma} = \sum (\lambda \tilde{\alpha} + (1 - \lambda) \tilde{\beta})
$$

= $\lambda \cdot \sum \tilde{\alpha} + (1 - \lambda) \cdot \sum \tilde{\beta}$
= $\lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1$.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Hence, all probabilities for player *i* in γ still sum up to 1. Altogether, $\gamma \in \mathcal{A}$, and therefore, \mathcal{A} is convex.

5 $B(\alpha)$ nonempty: For a fixed $\alpha_{-i},\, U_i$ is linear in the mixed strategies of player *i*, i. e., for $\beta_i, \gamma_i \in \Delta(\mathcal{A}_i)$,

$$
U_i(\alpha_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)=\lambda U_i(\alpha_{-i},\beta_i)+(1-\lambda)U_i(\alpha_{-i},\gamma_i)
$$
\n(1)

for all $\lambda \in [0,1]$.

Hence, U_i is continous on $\Delta(A_i)$.

Continous functions on closed and bounded sets take their maximum in that set.

Therefore, $B_i(\alpha_{-i}) \neq \emptyset$ for all $i \in \mathbb{N}$, and thus $B(\alpha) \neq \emptyset$.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0)

Theorem [Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

SS 2019 B. Nebel, R. Mattmüller – [Game Theory](#page-0-0) 40 / 56

Hence, $B_i(\alpha_{-i})$ is convex. τ *Graph(B)* closed: Let (α^k, β^k) be a convergent sequence in *Graph*(*B*) with $\lim_{k\to\infty}(\alpha^k, \beta^k) = (\alpha, \beta)$. So, $\alpha^k, \beta^k, \alpha, \beta \in \prod_{i \in \mathbb{N}} \Delta(\mathcal{A}_i)$ and $\beta^k \in B(\alpha^k)$. We need to show that $(\alpha, \beta) \in Graph(B)$, i.e., that $\beta \in B(\alpha)$.

With Equation [\(1\)](#page-36-0), this implies

To see this, let $\alpha'_i, \alpha''_i \in B_i(\alpha_{-i}).$ Then $U_i(\alpha_{-i}, \alpha'_i) = U_i(\alpha_{-i}, \alpha''_i)$.

$$
\lambda \alpha'_i + (1 - \lambda) \alpha''_i \in B_i(\alpha_{-i}).
$$

6 *B*(α) convex: This follows, since each *B*_{*i*}(α _{-*i*}) is convex.

[Strategies](#page-1-0) Nash's [Theorem](#page-21-0)

Mixed

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Nash's Theorem Proof

Proof (ctd.)

⁷ *Graph*(*B*) closed (ctd.): It holds for all *i* ∈ *N*:

$$
U_i(\alpha_{-i}, \beta_i) \stackrel{\text{(D)}}{=} U_i\left(\lim_{k \to \infty} (\alpha_{-i}^k, \beta_i^k)\right)
$$

\n
$$
\stackrel{\text{(C)}}{=} \lim_{k \to \infty} U_i(\alpha_{-i}^k, \beta_i^k)
$$

\n
$$
\stackrel{\text{(B)}}{\geq} \lim_{k \to \infty} U_i(\alpha_{-i}^k, \beta_i^{\prime}) \quad \text{for all } \beta_i^{\prime} \in \Delta(A_i)
$$

\n
$$
\stackrel{\text{(C)}}{=} U_i\left(\lim_{k \to \infty} \alpha_{-i}^k, \beta_i^{\prime}\right) \quad \text{for all } \beta_i^{\prime} \in \Delta(A_i)
$$

\n
$$
\stackrel{\text{(D)}}{=} U_i(\alpha_{-i}, \beta_i^{\prime}) \quad \text{for all } \beta_i^{\prime} \in \Delta(A_i).
$$

(D): def. α_i , β_i ; (C) continuity; (B) β_i^k best response to α_{-i}^k .

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0) [Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

⁷ *Graph*(*B*) closed (ctd.): It follows that β*ⁱ* is a best response to α_{-i} for all $i \in \mathbb{N}$.

Thus, $\beta \in B(\alpha)$ and finally $(\alpha, \beta) \in Graph(B)$.

Therefore, all requirements of Kakutani's fixpoint theorem are satisfied.

Applying Kakutani's theorem establishes the existence of a fixpoint of *B*, which is, by definition/construction, the same as a mixed-strategy Nash equilibrium.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Definitions](#page-25-0)

[Kakutani's Fixpoint](#page-29-0) Theorem

[Proof of Nash's](#page-31-0) Theorem

[Correlated](#page-40-0) **Equilibria**

3 [Correlated Equilibria](#page-40-0)

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Recall: There are three Nash equilibria in Bach or Stravinsky

- **COL** (*B*,*B*) with payoff profile (2,1)
- (*S*,*S*) with payoff profile (1,2)
- (α_1^*, α_2^*) with payoff profile $(2/3, 2/3)$ where

$$
\alpha_1^*(B) = 2/3, \ \alpha_1^*(S) = 1/3, \n= \alpha^*(B) - 1/2, \ \alpha^*(S) - 2/2.
$$

$$
\alpha_2^*(B) = 1/3, \alpha_2^*(S) = 2/3.
$$

Idea: Use a publicly visible coin toss to decide which action from a mixed strategy is played. This can lead to higher payoffs.

Mixed **[Strategies](#page-1-0)**

> Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Example (Correlated equilibrium in BoS)

With a fair coin that both players can observe, the players can agree to play as follows:

- If the coin shows heads, both play *B*.
- If the coin shows tails, both play *S*.

This is stable in the sense that no player has an incentive to deviate from this agreed-upon rule, as long as the other player keeps playing his/her strategy (cf. definition of Nash equilibria).

Expected payoffs: $(3/2, 3/2)$ instead of $(2/3, 2/3)$.

Mixed **[Strategies](#page-1-0)**

> Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

We assume that observations are made based on a finite probability space $(Ω, π)$, where $Ω$ is a set of states and $π$ is a probability measure on Ω.

Agents might not be able to distingush all states from each other. In order to model this, we assume for each player *i* an information partition \mathscr{P}_i = $\{P_{i1}, P_{i2}, \ldots, P_{ik_i}\}$. This means that $\bigcup \mathscr{P}_i$ = Ω for all *i*, and for all $P_j, P_k \in \mathscr{P}_i$ with $P_j \neq P_k$, we have $P_i \cap P_k = \emptyset$.

Example:
$$
\Omega = \{x, y, z\}, \mathcal{P}_1 = \{\{x\}, \{y, z\}\}, \mathcal{P}_2 = \{\{x, y\}, \{z\}\}.
$$

We say that a function $f : \Omega \to X$ respects an information partition for player *i* if $f(\omega) = f(\omega')$ whenever $\omega, \omega' \in P_i$ for some $P_i \in \mathscr{P}_i$.

Example: *f* respects \mathcal{P}_1 if $f(y) = f(z)$.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) Equilibria

A correlated equilibrium of a strategic game $\langle N,(A_i)_{i\in N},(u_i)_{i\in N}\rangle$ consists of

- **a** finite probability space (Ω, π) ,
- for each player $i \in N$ an information partition \mathscr{P}_i of Ω , T.
- for each player $i\in\mathsf{N}$ a function $\sigma_{\!i}:\mathsf{\Omega}\to\mathsf{A}_i$ that respects \mathscr{P}_i (σ_i is player *i*'s strategy)

 $\mathsf{such}\ \mathsf{that}\ \mathsf{for}\ \mathsf{every}\ i\in\mathsf{N}\ \mathsf{and}\ \mathsf{every}\ \mathsf{function}\ \tau_i:\Omega\rightarrow\mathsf{A}_i\ \mathsf{that}$ respects \mathscr{P}_i (i.e. for every possible strategy of player *i*) we have

$$
\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \geq \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega)).
$$
 (2)

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Example

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Equilibria: (*T*,*R*) with (2,7), (*B*,*L*) with (7,2), and mixed $((\frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3}), (\frac{2}{3})$ $\frac{2}{3}, \frac{1}{3}$ $\frac{1}{3})$) with $(4 + \frac{2}{3})$ $\frac{2}{3}$, 4 + $\frac{2}{3}$ $\frac{2}{3}$).

Assume $\Omega = \{x, y, z\}, \pi(x) = \frac{1}{3}, \pi(y) = \frac{1}{3}, \pi(z) = \frac{1}{3}.$ Assume further $\mathcal{P}_1 = \{ \{x\}, \{y, z\} \}, \mathcal{P}_2 = \{ \{x, y\}, \{z\} \}.$ Set $\sigma_1(x) = B$, $\sigma_1(y) = \sigma_1(z) = T$ and $\sigma_2(x) = \sigma_2(y) = L$, $\sigma_2(z) = R$.

Then both player play optimally and get a payoff profile of (5,5).

Proposition

For every mixed strategy Nash equilibrium α of a finite strategic game $\langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$, there is a correlated equilibrium $\langle (\Omega,\pi),(\mathscr{P}_i),(\sigma_i) \rangle$ in which for each player *i* the distribution on A_i induced by σ_i is α_i .

This means that correlated equilibria are a generalization of Nash equilibria.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

Proof

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Proof.

Let Ω = *A* and define $\pi(a) = \prod_{i \in N} \alpha_i(a_i)$. For each player *i*, let $a \in P$ and $b \in P$ for $P \in \mathscr{P}_i$ if a_i = b_i . Define $\sigma_i(a)$ = a_i for each *a* ∈ *A*.

Then $\langle (\Omega,\pi),(\mathscr{P}_i),(\sigma_i) \rangle$ is a correlated equilibrium since the left hand side of [\(2\)](#page-44-0) is the Nash equilibrium payoff and for each player *i* at least as good any other strategy τ*ⁱ* respecting the information partition. Further, the distribution induced by σ_i is α*i* .

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

[Summary](#page-50-0)

Proposition

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game. Any convex combination of correlated equilibirum payoff profiles of *G* is a correlated equilibirum payoff profile of G.

Proof idea: From given equilibria and weighting factors, create a new one by combining them orthogonally, using the weighting factors.

Proof.

Let u^1,\ldots,u^K be the payoff profiles and let $(\lambda^1,\ldots,\lambda^K)\in\mathbb{R}^K$ $\mathsf{with} \ \lambda^l \geq 0 \text{ and } \sum_{l=1}^K \lambda^l = 1. \text{ For each } l \text{ let } \langle (\Omega^l, \pi^l),(\mathscr{P}_i^l),(\sigma_i^l) \rangle$

be a correlated equilibrium generating payoff *u l* . Wlog. assume all Ω *l* 's are disjoint.

Now we define a correlated equilibrium generating the payoff $\sum_{l=1}^K \lambda^l u^l$. Let $\Omega = \bigcup_l \Omega^l$. For any $\omega \in \Omega$ define $\pi(\omega) = \lambda^l \pi^l(\omega)$ where *l* is such that $\omega \in \Omega^l$. For each $i \in \mathcal{N}$ let \mathscr{P}_i = $\bigcup_l \mathscr{P}_l^l$ and set $\sigma_i(\omega)$ = $\sigma'_i(\omega)$ where *l* is such that $\omega \in \Omega'.$

Basically, first throw a dice for which CE to go for, then proceed in this CE.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) Equilibria

4 [Summary](#page-50-0)

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) **Equilibria**

- Mixed strategies allow randomization.
- Characterization of mixed-strategy Nash equilibria: players only play best responses with positive probability (support lemma).
- Nash's Theorem: Every finite strategic game has a mixed-strategy Nash equilibrium.
- Correlated equilibria can lead to higher payoffs.
- All Nash equilibria are correlated equilibria, but not *vice versa*.

Mixed **[Strategies](#page-1-0)**

Nash's [Theorem](#page-21-0)

[Correlated](#page-40-0) Equilibria