

1 Preliminaries and Examples	
	-
	(ex
	come
	Strases
	Sumay
	3/84

Read: If player 1 plays T and player 2 plays L
then player 1 gets payoff w_{1} and player 2 gets payoff w_{2}, etc.

Prisoner's Dilemma

Prisoner's Dilemma

Example (Prisoner's Dilemma (payoff matrix))
Strategies $A_{1}=A_{2}=\{C, D\}$. options to either cooperate (C) with their fellow prisoner and stay silent, or defect (D) and accuse the fellow prisoner of the crime.

Possible outcomes:

- Both cooperate: no hard evidence against either of them, only short prison sentences for both.
- One cooperates, the other defects: the defecting prisoner is set free immediately, and the cooperating prisoner gets a very long prison sentence.
- Both confess: both get medium-length prison sentences.

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Matching Pennies

Example (Matching Pennies (payoff matrix))
Strategies $A_{1}=A_{2}=\{H, T\}$.
player 2

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Bach or Stravinsky (aka Battle of the Sexes)

Example (Bach or Stravinsky (payoff matrix))
Strategies $A_{1}=A_{2}=\{B, S\}$.

Preliminaries and
Example Solution Solution
Concepts and Notation Dominated
Strategies Strategies
Nash
Equilibria
Equilibria
Zero-Sum
Games
Summary

Bach enthusiast
Stravinsky enthusiast

	B	
	2,1	0,0
	0,0	1,2

player 1

		$-2,-2$	$-1.5,-1.5$
	$-2,-1.5$		
	$-1.5,-1.5$	$-2,-2$	$-2,-1.5$
c	$-1.5,-2$	$-1.5,-2$	$-2,-2$

2 Solution Concepts and Notation

Solution Concepts and Notation

Question: What is a "solution" of a strategic game?

Solution Concepts and Notation

Notation: we want to write down strategy profiles where one player's strategy is removed or replaced.

Let $a=\left(a_{1}, \ldots, a_{|N|}\right) \in A=\prod_{i \in N} A_{i}$ be a strategy profile.
We write:

$$
\begin{aligned}
& A_{-i}:=\prod_{j \in N \backslash\{i\}} A_{j} \\
& a_{-i}:=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{|N|}\right), \text { and } \\
& \left(a_{-i}, a_{i}^{\prime}\right):=\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots, a_{|N|}\right)
\end{aligned}
$$

Example

Let $A_{1}=\{T, B\}, A_{2}=\{L, R\}, A_{3}=\{X, Y, Z\}$, and $a:=(T, R, Z)$.
Then $a_{-1}=(R, Z), a_{-2}=(T, Z), a_{-3}=(T, R)$.
Moreover, $\left(a_{-2}, L\right)=(T, L, Z)$.

Strictly Dominated Strategies

Question: What strategy should an agent avoid?
One answer:

- Eliminate all obviously irrational strategies.
- A strategie is obviously irrational if there is another strategy that is always better, no matter what the other players do.

Strictly Dominated Strategies	
Definition (Strictly dominated strategy)	Preliminaries and Examples
Let $G=\left\langle N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ be a strategic game.	
A strategy $a_{i} \in A_{i}$ is called strictly dominated in G if there is	is aSolution Cuncepts and Notation
strategy $a_{i}^{+} \in A_{i}$ such that for all strategy profiles $a_{-i} \in A_{-i}$,	Dominated Strategies
$u_{i}\left(a_{-i}, a_{i}\right)<u_{i}\left(a_{-i}, a_{i}^{+}\right)$.	Stindy
We say that a_{i}^{+}strictly dominates a_{i}.	Nash Equilibria
If $a_{i}^{+} \in A_{i}$ strictly dominates every other strategy $a_{i}^{\prime} \in A_{i} \backslash\left\{a_{i}^{+}\right.$	$\left\{a_{i}^{+}\right\}, \quad \substack{\text { Zero-Sum } \\ \text { Games }}$
we call a_{i}^{+}strictly dominant in G.	Summary
Remark: Playing strictly dominated strategies is irrational.	

Strictly Dominated Strategies

This suggest a solution concept:
iterative elimination of strictly dominated strategies:
while some strictly dominated strategy is left: eliminate some strictly dominated strategy
if a unique strategy profile remains: this unique profile is the solution

Strictly Dominated Strategies		
This suggest a solution concept: iterative elimination of strictly dominated strategies: while some strictly dominated strategy is left: eliminate some strictly dominated strategy if a unique strategy profile remains: this unique profile is the solution		
		Preliminaries and Examples
		Solution Concepts and Notation
		Dominated Strategies
		Strictly Dominated Strategies Weakly Dominated Strategies
		Nash Equilibria
		Zero-Sum Games
SS 2019 B. Nebel, R. Mattmüller - Game Theory	23/84	

Strictly Dominated Strategies				U
Example (Iterative elimination of strictly dominated strategies for the prisoner's dilemma)				
player 2				
player $1{ }^{C}$	c	D		
	3,3	0,4		
	4,0	1,1		$\underbrace{}_{\substack{\text { Nash } \\ \text { Equibria }}}$
				$\underset{\substack{\text { Zero-Sum } \\ \text { Games }}}{\text { and }}$
				Summay
B. Nebel, R. Matamuiler - Game Theory			${ }^{24 / 84}$	

Strictly Dominated Strategies

Example (Iterative elim. of strictly dominated strategies)

- Step 1: eliminate row B (strictly dominated by row M)
- Step 2: eliminate column R (strictly dominated by col. L)
- Step 3: eliminate row M (strictly dominated by row T)

SS 2019
B. Nebel, R. Mattmüller - Game Theory

25/84

Example (Iterative elimination of strictly dominated strategies for Bach or Stravinsky)

- No strictly dominated strategies.
- All strategies survive iterative elimination of strictly dominated strategies.
- All strategies rationalizable.

Weakly Dominated Strategies

Definition (Weakly dominated strategy)
Let $G=\left\langle N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ be a strategic game.
A strategy $a_{i} \in A_{i}$ is called weakly dominated in G if there is a strategy $a_{i}^{+} \in A_{i}$ such that for all profiles $a_{-i} \in A_{-i}$,

$$
u_{i}\left(a_{-i}, a_{i}\right) \leq u_{i}\left(a_{-i}, a_{i}^{+}\right)
$$

and that for at least one profile $a_{-i} \in A_{-i}$,

$$
u_{i}\left(a_{-i}, a_{i}\right)<u_{i}\left(a_{-i}, a_{i}^{+}\right)
$$

We say that a_{i}^{+}weakly dominates a_{i}.
Weakly Dominated Strategies

What about

iterative elimination of weakly dominated strategies as a solution concept?

Let's see what happens.

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Weakly Dominated Strategies

Example (Iterative elim. of weakly dominated strategies)

Weakly Dominated Strategies

Example (Iterative elim. of weakly dominated strategies)

	player 2	
	K	R
player 1	31	20
	3	1,1
	\$	1,1

- Step 1: eliminate row T (weakly dominated by row M)
- Step 2: eliminate column L (weakly dominated by col. R)

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Nash Equilibria	$$	Nash Eq			ט				
	$\overline{\text { Z̄ü }}$	Definition	quilibrium, alternativ		츨푼				
Remark: There is an alternative definition of Nash equilibria (which we consider because it gives us a slightly different perspective on Nash equilibria).	Preliminaries and Examples	A Nash equilibrium of a strategic game $G=\left\langle N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ is a strategy profile $a^{*} \in A$ such that for every player $i \in N$, $a_{i}^{*} \in B_{i}\left(a_{-i}^{*}\right)$.			Preliminaries and Examples				
	Solution Concepts and Notatio				Solution Concepts and Notatio				
Definition (Best response) and Notation		Definition (Nash equilibrium, alternative 2)			Dominated				
Let $G=\left\langle N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ be a strategic game, $i \in N$ a player, and $a_{-i} \in A_{-i}$ a strategy profile of the players other than i. Then a strategy $a_{i} \in A_{i}$ is a best response of player i to a_{-i} if	Strategies				Strategies				
	Nash	A Nash equilibrium of a strategic game $G=\left\langle N,\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ is a strategy profile $a^{*} \in A$ such that $a^{*} \in B\left(a^{*}\right)$.			Nash				
	Then a strategy $a_{i} \in A_{i}$ is a best response of player i to a_{-i} if $u_{i}\left(a_{-i}, a_{i}\right) \geq u_{i}\left(a_{-i}, a_{i}^{\prime}\right) \quad$ for all $a_{i}^{\prime} \in A_{i}$.								
						Proposit			
						ceimin			
We write $B_{i}\left(a_{-i}\right)$ for the set of best responses of player i to a_{-i}.	Zero-Sum Games	The three	of Nash equilibria ar		Zero-Sum Games				
For a strategy profile $a \in A$, we write $B(a)=\prod_{i \in N} B_{i}\left(a_{-i}\right)$.	Summary	Proof.			Summary				
		Homework.							
	37/84	Ss 2019	B. Nebel, R. Mattmüler - Game Theory	$38 / 8$					

Nash Equilibria				U 年 -
Example (Nash Equilibria in Hawk and Dove)				㟎
player 2				$\begin{aligned} & \text { Preliminarie: } \\ & \text { and } \\ & \text { Examples } \end{aligned}$
player $1 \begin{aligned} & \text { D } \\ & \\ & \\ & H\end{aligned}$	D	H		Solution Concepts
	3,3	1,4		Dooninaed
	4,1	0,0		Nose
- (D, D): No Nash equilibrium (player 1: $D \rightarrow H$)				
				, meme
- (D, H): Nash equilibrium!				$\underset{\substack{\text { Zerosum } \\ \text { Games }}}{\text { and }}$
- (H,D): Nash equilibrium!				Summay
- (H,H): No Nash equilibrium (player 1: $H \rightarrow D$)				
			40/84	

Nash Equilibria				U
Example (Nash Equilibria in Matching Pennies)				z프는
	player 2			
player $1{ }^{H}$	H	T		Solution Concepts
	1,-1	-1, 1		Dorinated
	-1, 1	1,-1		
- (H, H): No Nash equilibrium (player 2: $H \rightarrow T$)				Seme
				${ }^{\text {comem }}$
- (H,T): No Nash equilibrium (player 1: $H \rightarrow T$)				$\underset{\substack{\text { Cearosum } \\ \text { Games }}}{\text { and }}$
- (T, H): No Nash equilibrium (player 1: $T \rightarrow H$)				Summay
- (T, T): No Nash equilibrium (player 2: $T \rightarrow H$)				
SS 2019 B. ${ }^{\text {enebel, R. Matmililer-Game Theory }}$			41/84	

Example: Sealed-Bid Auctions

We consider a slightly larger example: sealed-bid auctions
Example: Sealed-Bid Auctions

Question: What should the winning bidder have to pay?
One possible answer: The highest bid.
Definition (First-price sealed-bid auction)

- $N=\{1, \ldots, n\}$ with $v_{1}>v_{2}>\cdots>v_{n}>0$,
- $A_{i}=\mathbb{R}_{0}^{+}$for all $i \in N$,
- Bidder $i \in N$ wins if b_{i} is maximal among all bids (+ possible tie-breaking by index), and
$\quad u_{i}(b)= \begin{cases}0 & \text { if player } i \text { does not win } \\ v_{i}-b_{i} & \text { otherwise }\end{cases}$
where $b=\left(b_{1}, \ldots, b_{n}\right)$.

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Example: Sealed-Bid Auctions
Example: Sealed-Bid Auctions

Proposition
In a second-price sealed-bid auction, bidding ones own valuation, $b_{i}^{+}=v_{i}$, is a weakly dominant strategy.

Proof.
We have to show that b_{i}^{+}weakly dominates every other strategy b_{i} of player i.
For that, it suffices to show thatfor all $b_{i} \in A_{i}$, we have

$$
u_{i}\left(b_{-i}, b_{i}^{+}\right) \geq u_{i}\left(b_{-i}, b_{i}\right) \text { for all } b_{-i} \in A_{-i} \text {, and that }
$$for all $b_{i} \in A_{i}$, we have

Observations:

- Bidder 1 wins, pays 85 , gets utility

$$
u_{1}(b)=v_{1}-b_{2}=100-85=15 .
$$

- Bidders 2 and 3 pay nothing, get utility 0 .
- Bidder 1 has no incentive to bid strategically and guess the other bidders' private valuations.

$$
u_{i}\left(b_{-i}, b_{i}^{+}\right)>u_{i}\left(b_{-i}, b_{i}\right) \text { for at least one } b_{-i} \in A_{-i}
$$

Iterative Elimination and Nash Equilibria

Motivation: We have seen two different solution concepts,

- Surviving iterative elimination of (strictly) dominated strategies and
■ Nash equilibria.

Obvious question: Is there any relationship between the two?
Answer: Yes, Nash equilibria refine the concept of iterative elimination of strictly dominated strategies. We will formalize this on the next slides.

Example: Sealed-Bid Auctions

Proposition

Profiles of weakly dominant strategies are Nash equilibria.
Proof.
Homework.
Proposition
In a second-price sealed-bid auction, if all bidders bid their true valuations, this is a Nash equilibrium.

Proof.
Follows immediately from the previous two propositions.
Remark: This is not the only Nash equilibrium in second-price sealed-bid auctions, though.
$\begin{array}{lll}\text { SS } 2019 & \text { B. Nebel, R. Mattmüller - Game Theory } & 52 \text { /84 }\end{array}$
$52 / 84$
Iterative Elimination and Nash Equilibria
Lemma (preservation of Nash equilibria)
Let G and G^{\prime} be two strategic games where G^{\prime} is obtained
from G by elimination of one strictly dominated strategy.

Iterative Elimination and Nash Equilibria

Proof (ctd.)

" \Rightarrow ": Let a^{*} be a Nash equilibrium of G.

- Nash equilibrium strategies are not eliminated: For players $j \neq i$, this is clear, because none of their strategies are eliminated.

For player i, action a_{i}^{*} is a best response to a_{-i}^{*}, and in particular at least as good a response as a_{i}^{+}:

$$
u_{i}\left(a_{-i}^{*}, a_{i}^{*}\right) \geq u_{i}\left(a_{-i}^{*}, a_{i}^{+}\right) .
$$

With (1) $u_{i}\left(a_{-i}, a_{i}^{+}\right)>u_{i}\left(a_{-i}, a_{i}^{\prime}\right)$, we get $u_{i}\left(a_{-i}^{*}, a_{i}^{*}\right)>u_{i}\left(a_{-i}^{*}, a_{i}^{\prime}\right)$ and hence $a_{i}^{*} \neq a_{i}^{\prime}$.
Thus, the Nash equilibrium strategy a_{i}^{*} is not eliminated.

Proof (ctd.)

" \Leftarrow " (ctd.):
■ For player i : Since $A_{i}=A_{i}^{\prime} \cup\left\{a_{i}\right\}$ and a_{i}^{*} is a best response to a_{-i}^{*} among the strategies in A_{i}^{\prime}, it suffices to show that a_{i} is no better response.
Because a^{*} is a Nash equilibrium in G^{\prime} and a_{i}^{+}is a strategy in A_{i}^{\prime}, we have $u_{i}\left(a_{-i}^{*}, a_{i}^{*}\right) \geq u_{i}\left(a_{-i}^{*}, a_{i}^{+}\right)$.
Since a_{i}^{+}strictly dominates a_{i}, we have $u_{i}\left(a_{-i}^{*}, a_{i}^{+}\right)>u_{i}\left(a_{-i}^{*}, a_{i}\right)$, and hence $u_{i}\left(a_{-i}^{*}, a_{i}^{*}\right)>u_{i}\left(a_{-i}^{*}, a_{i}\right)$. Therefore, a_{i} cannot be a better response to a_{-i}^{*} than a_{i}^{*}.
Hence, a^{*} is also a Nash equilibrium of G.

Iterative Elimination and Nash Equilibria

Proof (ctd.)
" \Rightarrow " (ctd.):

- Best responses remain best responses: For all players $j \in N, a_{j}^{*}$ is a best response to a_{-j}^{*} in G. Since in G^{\prime}, no potentially better responses are introduced ($A_{j}^{\prime} \subseteq A_{j}$) and the payoffs are unchanged, this also holds in G^{\prime}.
Hence, a^{*} is also a Nash equilibrium of G^{\prime}.
" \Leftarrow ": Let a^{*} be a Nash equilibrium of G^{\prime}.
\square For player $j \neq i: a_{j}^{*}$ is a best response to a_{-j}^{*} in G as well, since the responses available to player j in G and G^{\prime} are the same.

Playing it Safe (in Two-Player Games)

Motivation: What happens if both players try to "play it safe"?
Question: What does it even mean to "play it safe"?

Answer: Choose a strategy that guarantees the highest worst-case payoff.

Playing it Safe (in Two-Player Games)

Observation: In general, pairs of maximinimizers, like (T, L) in the example above, are not the same as Nash equilibria.

Claim: However, in zero-sum games, pairs of maximinimizers and Nash equilibria are essentially the same.
(Tiny restriction: This does not hold if the considered game has no Nash equilibrium at
all, because unlike Nash equilibria, pairs of maximinimizers always exist.)
Reason (intuitively): In zero-sum games, the worst-case assumption that the other player tries to harm you as much as possible is justified, because harming the other is the same as maximizing ones own payoff. Playing it safe is rational.

However: Unlike (B, R), the profile (T, L) is not a Nash equilibrium.
SS 2019
B. Nebel, R. Mattmüller - Game Theory

Observation: Results identical up to different sign.

SS 2019
B. Nebel, R. Mattmüller - Game Theory

67 / 84

Maximinimizers		\underline{y}
Proof (ctd.)		Preliminaries and Examples
Thus, for all $y \in A_{2}$,		Solution Concepts and Notation
$-\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y) \stackrel{(3)}{=} \max _{y \in A_{2}}-\max _{x \in A_{1}} u_{1}(x, y)$		Dominated Strategies
$\stackrel{(3)}{=} \max \min -u_{1}(x, y)$		Nash Equilibria
$y \in A_{2} \quad x \in A_{1}$		Zero-Sum Games
$\stackrel{\mathrm{ZS}}{=} \max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y) .$		Summary
	\square	
SS 2019 B. Nebel, R. Mattmüller - Game Theory	69/84	

Nash Equilibria in Zero-Sum Games
Nash Equilibria in Zero-Sum Games

Theorem (Maximinimizer theorem)
Let $G=\left\langle\{1,2\},\left(A_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right\rangle$ be a zero-sum game. Then:
1 If $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G, then x^{*} and y^{*} are maximinimizers for player 1 and player 2, respectively.If $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G, then
$\max _{x \in A_{1}} \min _{y \in A_{2}} u_{1}(x, y)=\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)=u_{1}\left(x^{*}, y^{*}\right)$.
3 If $\max _{x \in A_{1}} \min _{y \in A_{2}} u_{1}(x, y)=\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)$, and x^{*} and y^{*} maximinimizers of player 1 and player 2 respectively, then $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium.

Nash Equilibria in Zero-Sum Games
freiburg

Proof (ctd.)

1 (ctd.)
Inequalities (4) and (5) together imply that

$$
\begin{equation*}
u_{1}\left(x^{*}, y^{*}\right)=\max _{x \in A_{1}} \min _{y \in A_{2}} u_{1}(x, y) \tag{6}
\end{equation*}
$$

Thus, x^{*} is a maximinimizer for player 1 .
Similarly, we can show that y^{*} is a maximinimizer for player 2:

$$
\begin{equation*}
u_{2}\left(x^{*}, y^{*}\right)=\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y) \tag{7}
\end{equation*}
$$

SS 2019
B. Nebel, R. Mattmüller - Game Theory

Nash Equilibria in Zero-Sum Games

Proof (ctd.)

We only need to put things together:$$
\begin{aligned}
\max _{x \in A_{1}} \min _{y \in A_{2}} u_{1}(x, y) & \stackrel{(6)}{=} u_{1}\left(x^{*}, y^{*}\right) \\
& \stackrel{\mathrm{ZS}}{=}-u_{2}\left(x^{*}, y^{*}\right) \\
& \stackrel{(7)}{=}-\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y) \\
& \stackrel{(2)}{=} \min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)
\end{aligned}
$$

In particular, it follows that all Nash equilibria share the same payoff profile.

Nash Equilibria in Zero-Sum Games

Proof (ctd.)

3 (ctd.)
Special cases of (10) and (11) for $x=x^{*}$ and $y=y^{*}$:

$$
u_{1}\left(x^{*}, y^{*}\right) \geq v^{*} \quad \text { and } \quad u_{2}\left(x^{*}, y^{*}\right) \geq-v^{*}
$$

With $u_{1}=-u_{2}$, the latter is equivalent to $u_{1}\left(x^{*}, y^{*}\right) \leq v^{*}$, which gives us

$$
\begin{equation*}
u_{1}\left(x^{*}, y^{*}\right)=v^{*} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& u_{1}\left(x^{*}, y\right) \geq v^{*} \quad \text { for all } y \in A_{2}, \text { and } \tag{10}\\
& u_{2}\left(x, y^{*}\right) \geq-v^{*} \quad \text { for all } x \in A_{1} . \tag{11}
\end{align*}
$$

6 Summary

Summary

- Strategic games are one-shot games of finitely many players with given action sets and payoff functions Players have perfect information.
- Solution concepts: survival of iterative elimination o strictly dominated strategies, Nash equilibria.
- Relation between solution concepts: Nash equilibria always survive iterative elimination of strictly dominated strategies.
- In zero-sum games, one player's gain is the other player's loss. Thus, playing it safe is rational. Relevant concept: maximinimizers.
- Relation to Nash equilibria: In zero-sum games, Nash equilibria are pairs of maximinimizers, and, if at least one Nash equilibrium exists, pairs of maximinimizers are also Nash equilibria.

