

We can describe finite	e strat	egic game	s using <mark>pa</mark> y	off matrices.	UN FRE
Example: Two-player	-		-		Preliminar and Examples
B, and player 2 has a	ctions			matrix	Solution Concepts and Notati
		play	/er 2		Dominated Strategies
		L	R	_	Nash Equilibria
	Т	w ₁ , w ₂	<i>x</i> ₁ , <i>x</i> ₂		Zero-Sum Games
player 1	В	<i>y</i> ₁ , <i>y</i> ₂	<i>z</i> ₁ , <i>z</i> ₂		Summary

B. Nebel, R. Mattmüller - Game Theory

5/84

SS 2019

Prisoner's Dilemma

6/84

Example (Prisoner's Dilemma (informally))

Two prisoners are interrogated separately, and have the options to either cooperate (C) with their fellow prisoner and stay silent, or defect (D) and accuse the fellow prisoner of the crime.

Possible outcomes:

- Both cooperate: no hard evidence against either of them, only short prison sentences for both.
- One cooperates, the other defects: the defecting prisoner is set free immediately, and the cooperating prisoner gets a very long prison sentence.
- Both confess: both get medium-length prison sentences.

SS 2019

B. Nebel, R. Mattmüller – Game Theory

Matc

Matching Penni	ies		
A strictly competitiv	e game:		Preliminaries and Examples
Example (Matchir	ng Pennies (informally))		Solution Concepts and Notation
Two players can che	oose either heads (H) or tails (T) o	of a coin.	Dominated Strategies
Possible outcomes:			Nash Equilibria
Both players m one Euro from	take the same choice: player 1 record player 2.	eives	Zero-Sum Games
The players ma Euro from play	ake different choices: player 2 rece er 1.	ives one	Summary
SS 2019	B. Nebel, R. Mattmüller – Game Theory	10 / 84	

A coordination game:

Example (Bach or Stravinsky (informally))

Two persons, one of whom prefers Bach whereas the other prefers Stravinsky want to go to a concert together. For both it is more important to go to the same concert than to go to their favorite one. Let *B* be the action of going to the Bach concert and S the action of going to the Stravinsky concert.

Possible outcomes:

- Both players make the same choice: the player whose preferred option is chosen gets high payoff, the other player gets medium payoff.
- The players make different choices: they both get zero payoff.

UNI FREIBURG

Preliminaries

Examples

Concepts

and Notation

Strategies

Nash

Equilibria Zero-Sum

Games

and

Stele

Solution Concepts and Notation

Question: What is a "solution" of a strategic game?

Answer:

- A strategy profile where all players play strategies that are rational (i. e., in some sense optimal).
- Note: There are different ways of making the above item precise (different solution concepts).
- A solution concept is a formal rule for predicting how a game will be played.

In the following, we will consider some solution concepts:

- Iterated dominance
- Nash equilibrium
- (Subgame-perfect equilibrium)

Let $A_1 = \{T, B\}$, $A_2 = \{L, R\}$, $A_3 = \{X, Y, Z\}$, and a := (T, R, Z). Then $a_{-1} = (R, Z)$, $a_{-2} = (T, Z)$, $a_{-3} = (T, R)$. Moreover, $(a_{-2}, L) = (T, L, Z)$.

```
SS 2019
```

SS 2019

B. Nebel, R. Mattmüller - Game Theory

17 / 84

UNI FREIBURG

Preliminarie

Examples

Solution

Concepts

Strategies

Zero-Sum

Games Summary

Nash

and Notation

and

Question: What strategy should an agent avoid? Solution One answer: Eliminate all obviously irrational strategies. Solution A strategie is obviously irrational if there is another strategy that is always better, no matter what the other players do. Solution Nash Equilibria Zero-Sum Games Summary Solution	St	rictly Dominated Strategies		BURG
SS 2019 B Nebel B Mattmüller – Game Theory 21 / 84	Or I	 e answer: Eliminate all obviously irrational strategies. A strategie is obviously irrational if there is another strategy that is always better, no matter what the oth players do. 		Examples Solution Concepts and Notation Dominated Strategies Stricty cominated Strategies Weakly cominated Strategies Nash Equilibria Zero-Sum Games
	SS 2	019 B. Nebel, R. Mattmüller – Game Theory	21 / 84	

Strictly Dominated Strategies

Example (Iterative eliminat strategies for the prisoner's			minated	Preliminaries and Examples
	play	yer 2		Solution Concepts
	С	D		and Notation Dominated Strategies
C player 1	3,3	0,4		Strictly Dominated Strategies Weakly Dominated Strategies
player 1 D	4,0	1,1		Nash Equilibria
				Zero-Sum Games
				Summary

2

Weakly Dominated Strategies	BURG	Weakly Dominated Strategies
Definition (Weakly dominated strategy) Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.	Preliminaries and Examples	
A strategy $a_i \in A_i$ is called weakly dominated in <i>G</i> if there is a strategy $a_i^+ \in A_i$ such that for all profiles $a_{-i} \in A_{-i}$,	Solution Concepts and Notation	What about
$u_i(a_{-i},a_i)\leq u_i(a_{-i},a_i^+)$	Dominated Strategies Strictly Dominated Strategies	iterative elimination of weakly dominate as a solution concept?
nd that for at least one profile $a_{-i} \in A_{-i}$,	Weakly Dominated Strategies Nash Equilibria	Let's see what happens.
$u_i(a_{-i}, a_i) < u_i(a_{-i}, a_i^+).$	Zero-Sum Games	
We say that a_i^+ weakly dominates a_i .	Summary	
If $a_i^+ \in A_i$ weakly dominates every other strategy $a_i' \in A_i \setminus \{a_i^+\}$, we call a_i^+ weakly dominant in <i>G</i> .		
SS 2019 B. Nebel, R. Mattmüller – Game Theory 28 / 84		SS 2019 B. Nebel, R. Mattmüller – Game T

Weakly Domina	ated Strategies	
as a solution conce Let's see what hap	pens.	Preliminaries and Examples Solution Concepts and Notation Dominated Strategies Weakly Dominated Strategies Weakly Dominated Strategies Reguilibria Zero-Sum Games Summary
SS 2019	B. Nebel, R. Mattmüller – Game Theory	29 / 84

Nash Equilibria

Question: Which strategy profiles are stable?

Possible answer:

Strategy profiles where no player benefits from playing a different strategy BURG

and

Examples

and Notation

Strategies

Nash Equilibria Definitions and Examples

Example:

Iterative Elimination and Nash Equilibria Zero-Sum

Games

Summarv

35 / 84

UNI FREIBURG

Preliminari

Examples

and Notatio

Strategies

Definitions and

Examples

Example:

Iterative

Elimination and Nash Equilibria

Zero-Sum

Summary

Games

and

Equivalently: Strategy profiles where every player's strategy is a best response to the other players' strategies

Such strategy profiles are called Nash equilibria, one of the most-used solution concepts in game theory.

Remark: In following examples, for non-Nash equilibria, only one possible profitable deviation is shown (even if there are more).

SS 2019

B. Nebel, R. Mattmüller – Game Theory

Nash Equilibria

Remark: There is an alternative definition of Nash equilibria (which we consider because it gives us a slightly different perspective on Nash equilibria).

Definition (Best response)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game, $i \in N$ a player, and $a_{-i} \in A_{-i}$ a strategy profile of the players other than *i*. Then a strategy $a_i \in A_i$ is a best response of player *i* to a_{-i} if

 $u_i(a_{-i},a_i) \ge u_i(a_{-i},a_i')$ for all $a_i' \in A_i$.

We write $B_i(a_{-i})$ for the set of best responses of player *i* to a_{-i} . For a strategy profile $a \in A$, we write $B(a) = \prod_{i \in N} B_i(a_{-i})$.

Nash EquilibriaDefinition (Nash equilibrium)A Nash equilibrium of a strategic game
$$G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$$

is a strategy profile $a^* \in A$ such that for every player $i \in N$,
 $u_i(a^*) \ge u_i(a^*_{-i}, a_i)$ for all $a_i \in A_i$. $u_i(a^*) \ge u_i(a^*_{-i}, a_i)$ for all $a_i \in A_i$.State
Care barder
Care barde

37 / 84

Example: Sealed-Bid Auctions

	Preliminaries and Examples
	Solution Concepts and Notation
ate	Dominated Strategies
	Nash Equilibria Definitions and Examples
	Example: Sealed-Bid Auctions
b _i .	Elimination and Nash Equilibria
e., if	Zero-Sum Games
(j.)	Summary

43 / 84

We consider a slightly larger example: sealed-bid auctions

Setting:

- An object has to be assigned to a winning bidder in exchange for a payment.
- For each player ("bidder") i = 1,...,n, let v_i be the private value that bidder i assigns to the object. (We assume that v₁ > v₂ > ··· > v_n > 0.)
- The bidders simultaneously give their bids $b_i \ge 0$, i = 1, ..., n.
- The object is given to the bidder *i* with the highest bid b_i. (Ties are broken in favor of bidders with lower index, i.e., if b_i = b_j are the highest bids, then bidder *i* will win iff *i* < *j*.)

SS 2019

B. Nebel, R. Mattmüller – Game Theory

Example: S	ealed-Bid Auctions	BURG
	at should the winning bidder have to pay answer: The highest bid.	and Examples
$N = \{1, \dots \}$ $A_i = \mathbb{R}_0^+ \text{ fo}$ $\text{Bidder } i \in (+ \text{ possibl})$ $u_i(b) = \begin{cases} 0 \\ v \end{cases}$	rst-price sealed-bid auction) ., <i>n</i> } with $v_1 > v_2 > \cdots > v_n > 0$, ar all <i>i</i> ∈ <i>N</i> , i <i>N</i> wins if b_i is maximal among all bids the tie-breaking by index), and 0 if player <i>i</i> does not win $v_i - b_i$ otherwise (b_1, \dots, b_n) .	Solution Concepts and Notation Dominated Strategies Nash Equilibria Definitions and Examples
SS 2019	E. Nebel, R. Mattmüller – Game Theory	Summary 44 / 84

Example: Sealed-Bid Auctions	BURG
Question: How to avoid untruthful bidding and incentivize truthful revelation of private valuations?	Preliminaries
Different answer to question about payments: Winner pays the	Examples
second-highest bid.	Solution Concepts and Notation
Definition (Second-price sealed-bid auction)	Dominated Strategies
■ $N = \{1,, n\}$ with $v_1 > v_2 > \cdots > v_n > 0$,	Nash Equilibria
$\blacksquare A_i = \mathbb{R}_0^+ \text{ for all } i \in N,$	Definitions and Examples
Bidder $i \in N$ wins if b_i is maximal among all bids (+ possible tie-breaking by index), and	Example: Sealed-Bid Auctions Iterative Elimination and Nash Equilibria
$\int 0$ if player <i>i</i> does not win	Zero-Sum Games
$u_i(b) = \begin{cases} 0 & \text{if player } i \text{ does not win} \\ v_i - \max b_{-i} & \text{otherwise} \\ \text{where } b = (b_1, \dots, b_n). \end{cases}$	Summary
SS 2019 B. Nebel, R. Mattmüller – Game Theory 46 / 84	

Example: Sealed-Bid Auctions

Preliminarie

Solution

and Notatio

Strategies

Definitions and

Example:

Auctions

Iterative

Elimination and

Nash Equilibria

Zero-Sum

Summarv

47 / 84

Sealed-Bid

and

Example (Second-price sealed-bid auction)

Assume three bidders 1, 2, and 3, with valuations and bids

<i>v</i> ₁ = 100,	<i>v</i> ₂ = 80,	$v_3 = 53,$
<i>b</i> ₁ = 90,	<i>b</i> ₂ = 85,	<i>b</i> ₃ = 45.

Observations:

- Bidder 1 wins, pays 85, gets utility $u_1(b) = v_1 - b_2 = 100 - 85 = 15.$
- Bidders 2 and 3 pay nothing, get utility 0.
- Bidder 1 has no incentive to bid strategically and guess the other bidders' private valuations.

SS 2019

B. Nebel, R. Mattmüller - Game Theory

UNI FREIBURG **Example: Sealed-Bid Auctions** Preliminarie Proof (ctd.) and Ad (1) [regardless of what the other bidders do, b_i^+ is always a best response]: and Notation Case I) bidder i wins: Strategies bidder *i* pays max $b_{-i} \leq v_i$, gets $u_i(b_{-i}, b_i^+) \geq 0$. Definitions and Case I.a) bidder i decreases bid: Examples Example: this does not help, since he might still win and pay the Sealed-Bid Auctions same as before, or lose and get utility 0. Iterative Elimination and Nash Equilibria Case I.b) bidder i increases bid: Zero-Sum bidder *i* still wins and pays the same as before. Games Summarv 49 / 84

Example: S	Sealed-Bid Auctions	BURG
Proof (ctd.)		FRE
	ch alternative b_i to b_i^+ , there is an oppie b_{-i} against which b_i^+ is strictly better	
	e strategy other than b_i^+ .	Solution Concepts and Notation
Case I) b	$b_i < b_i^+$:	Dominated Strategies
Consider	b_{-i} with $b_i < \max b_{-i} < b_i^+$. Didder <i>i</i> does not win any more, i. e., y	Nash Equilibria Definitions and
	$(b) > 0 = u_i(b_{-i}, b_i).$	Examples Example: Sealed-Bid Auctions
Case II)	1	Iterative Elimination and Nash Equilibria
	b_{-i} with $b_i > \max b_{-i} > b_i^+$. bidder <i>i</i> overbids and pays more than	the object is Zero-Sum Games
-	him, i. e., we have $u_i(b_{-i}, b_i^+) = 0 > u_i$	
SS 2019	B. Nebel, R. Mattmüller – Game Theory	51 / 84

Example: Sealed-Bid Auctions

Proposition

Profiles of weakly dominant strategies are Nash equilibria.

Proof.

Homework.

Proposition

In a second-price sealed-bid auction, if all bidders bid their true valuations, this is a Nash equilibrium.

Proof.

Follows immediately from the previous two propositions.

Remark: This is not the only Nash equilibrium in second-price sealed-bid auctions, though.

SS 2019

B. Nebel, R. Mattmüller - Game Theory

Iterative Elimination and Nash Equilibria

Preliminaries

Examples

Concepts

Strategies

Definitions and

Examples

Example:

Iterative

Elimination and

Nash Equilibria

Zero-Sum

Games

and Notation

and

UNI FREIBURG

52/84

Preliminarie

Concepts and Notation

Strategies

Definitions and Examples

Nash Equilibria Zero-Sum

Games Summary

Example: Sealed-Bid Auctions Iterative Elimination and

and

Lemma (preservation of Nash equilibria)

Let G and G' be two strategic games where G' is obtained from G by elimination of one strictly dominated strategy. Then a strategy profile a^{*} is a Nash equilibrium of G if and only if it is Nash equilibrium of G'.

Proof.

Let $G = \langle N, (A_i)_{i \in \mathbb{N}}, (u_i)_{i \in \mathbb{N}} \rangle$ and $G' = \langle N, (A'_i)_{i \in \mathbb{N}}, (u'_i)_{i \in \mathbb{N}} \rangle$. Let a'_i be the eliminated strategy. Then there is a strategy a_i^+ such that for all $a_{-i} \in A_{-i}$,

> $u_i(a_{-i},a'_i) < u_i(a_{-i},a^+_i).$ (1) Summary

Iterative Elimination and Nash Equilibria

UN FREIBURG

and

and Notation

Strategies

Equilibria

Iterative

Elimination and

Nash Equilibria

Summary

55 / 84

Proof (ctd.)

- " \Rightarrow ": Let a^* be a Nash equilibrium of G.
 - Nash equilibrium strategies are not eliminated: For players $j \neq i$, this is clear, because none of their strategies are eliminated.

For player *i*, action a_i^* is a best response to a_{-i}^* , and in particular at least as good a response as a_i^+ :

 $u_i(a_{-i}^*,a_i^*) \geq u_i(a_{-i}^*,a_i^*).$

With (1) $u_i(a_{-i}, a_i^+) > u_i(a_{-i}, a_i')$, we get $u_i(a_{-i}^*, a_i^*) > u_i(a_{-i}^*, a_i')$ and hence $a_i^* \neq a_i'$.

Thus, the Nash equilibrium strategy a_i^* is not eliminated.

SS 2019

B. Nebel, R. Mattmüller – Game Theory

Iterative Elimination and Nash Equilibria

Preliminarie

and Notatio

Strategies

Definitions and Examples Example:

Iterative

Elimination and

Nash Equilibria

Zero-Sum

Games

Summary

and

Proof (ctd.)

"⇒" (ctd.):

Best responses remain best responses: For all players $j \in N$, a_j^* is a best response to a_{-j}^* in *G*. Since in *G'*, no potentially better responses are introduced ($A'_j \subseteq A_j$) and the payoffs are unchanged, this also holds in *G'*.

Hence, a^* is also a Nash equilibrium of G'.

" \Leftarrow ": Let a^* be a Nash equilibrium of G'.

For player $j \neq i$: a_j^* is a best response to a_{-j}^* in *G* as well, since the responses available to player *j* in *G* and *G'* are the same.

B. Nebel, R. Mattmüller - Game Theory

SS 2019

.

Iterative Elimination and Nash Equilibria

56 / 84

Corollary

If iterative elimination of strictly dominated strategies results in a *unique* strategy profile a^* , then a^* is the unique Nash equilibrium of the original game.

Proof.

Assume that a^* is the unique remaining strategy profile. By definition, a^* must be a Nash equilibrium of the remaining game.

We can inductively apply the previous lemma (preservation of Nash equilibria) and see that a^* (and no other strategy profile) must have been a Nash equilibrium before the last elimination step, and before that step, ..., and in the original game.

Playing it Safe	(in Two-Player Games)		
		58	Preliminaries and Examples
Motivation: What h	appens if both players try to "play	it safe"?	Solution Concepts and Notation
Question: What do	bes it even mean to "play it safe"?		Dominated Strategies
Answer: Choose a worst-case payoff.	strategy that guarantees the high	est	Nash Equilibria Zero-Sum Games
			Summary
SS 2019	B. Nebel, R. Mattmüller – Game Theory	61 / 84	

Playing it Safe (in Two-Player Games)

Playing it Safe (in Two-Player Games)

Preliminaries

Concepts

and Notation

Strategies

Zero-Sum

Games

Summary

and

Observation: In general, pairs of maximinimizers, like (T, L) in the example above, are not the same as Nash equilibria.

Claim: However, in zero-sum games, pairs of maximinimizers and Nash equilibria are essentially the same.

(Tiny restriction: This does not hold if the considered game has no Nash equilibrium at all, because unlike Nash equilibria, pairs of maximinimizers always exist.)

Reason (intuitively): In zero-sum games, the worst-case assumption that the other player tries to harm you as much as possible is justified, because harming the other is the same as maximizing ones own payoff. Playing it safe is rational.

B. Nebel, R. Mattmüller - Game Theory

63 / 84

UNI FREIBURG **Maximinimizers** Preliminaries and **Definition (Maximinimizer)** Let $G = \langle \{1, 2\}, (A_i)_{i \in \mathbb{N}}, (u_i)_{i \in \mathbb{N}} \rangle$ be a zero-sum game. Concepts and Notation An action $x^* \in A_1$ is called maximinimizer for player 1 in *G* if $\min_{y \in A_2} u_1(x^*, y) \geq \min_{y \in A_2} u_1(x, y) \quad \text{for all } x \in A_1,$ Nash Zero-Sum and $y^* \in A_2$ is called maximinimizer for player 2 in *G* if Games Summary $\min_{x\in \mathcal{A}_1} u_2(x,y^*) \geq \min_{x\in \mathcal{A}_1} u_2(x,y) \qquad \text{for all } y\in \mathcal{A}_2.$

SS 2019

B. Nebel, R. Mattmüller - Game Theory

65 / 84

. . . 3. .

Maximinimizers					BUR
Example (Zero-sum	game wit	th three a	actions e	ach)	FRE
player 2					Preliminaries and
	L	С	R		Examples
Т	8,-8	3, -3	-6, 6		Solution Concepts and Notation
player 1 M	2, -2	-1, 1	3,-3		Dominated Strategies
В	- 6 , 6	4,-4	8,-8		Nash Equilibria
					Zero-Sum Games
Guaranteed worst-case payoffs:				Summary	
T: -6, M: -1, B: -6 \rightsquigarrow maximinimizer M					
■ L: -8, C: -4, R: -8	3 → maxin	ninimizer C	>		
→ pair of maximinimizer (not a Nash equilibriu			• • •	librium.)	
SS 2019 B. Nebel, R. Mattmüller – Game Theory 66 /			66 / 84		

U

Maximinimizers				BURG
Example (Maximinimization vs. minimaximization)				
	player 2			and Examples
	L	R		Solution Concepts and Notation
T player 1	1,-1	2,-2		Dominated Strategies
B	-2, 2	-4, 4		Nash Equilibria
				Zero-Sum Games
Worst-case payoffs (player 2): Best-case payoffs (player 1):			fs (player 1):	Summary
■ <i>L</i> : −1, <i>R</i> : −2	I	L: +1, R: +	2	
■ Maximize: -1	1	Minimize: -	+1	
Observation: Results identical up to different sign.				
SS 2019 B. Nebel,	R. Mattmüller – Gam	e Theory	67 / 84	

Nach Equilibria in Zero Sum Comes

Nash Equil	ibria in Zero-Sum Games	BURG
		FRE
Now we are r	eady to prove our	Preliminaries and Examples
-	em about zero-sum games and Nash	equilibria. Solution Concepts and Notation
In zero-sum g	ames:	Dominated Strategies
1 Every Na	sh equilibrium is a pair of maximinim	izers. Nash Equilibria
2 All Nash	equilibria have the same payoffs.	Zero-Sum Games
If there is every pai	Summary	
SS 2019	B. Nebel, R. Mattmüller – Game Theory	70 / 84

Nash Equi	libria in Zero-Sum Games	BURG
		L N
Theorem (M	laximinimizer theorem)	Preliminaries
Let $G = \langle \{1, 2\}$	$\{2\}, ({\sf A}_i)_{i\in {\sf N}}, (u_i)_{i\in {\sf N}} angle$ be a zero-sum game	e. Then: Examples
) is a Nash equilibrium of G, then x^* a	 and Notation
maximin	imizers for player 1 and player 2, resp	CCTIVELY. Dominated Strategies
2 If (x^*, y^*)) is a Nash equilibrium of G, then	Nash Equilibria
$\max_{x \in A_1}$	$\min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y) = u_1$	(X [*] , Y [*]). Zero-Sum Games
		Summary
and x* a	$A_1 \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} dy^* \max \min \min zers of player 1 and yely, then (x^*, y^*) is a Nash equilibrium$	player 2
SS 2019	B. Nebel, R. Mattmüller – Game Theory	71 / 84

Nash Equilibria	a in Zero-Sum Games	BURG
$\max_{x \in A_1}$	to put things together: $\min_{y \in A_2} u_1(x, y) \stackrel{(6)}{=} u_1(x^*, y^*)$ $\stackrel{ZS}{=} -u_2(x^*, y^*)$ $\stackrel{(7)}{=} -\max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$ $\stackrel{(2)}{=} \min_{y \in A_2} \max_{x \in A_1} u_1(x, y).$ if follows that all Nash equilibria sharper formula.	Games Summary
SS 2019	B. Nebel, R. Mattmüller – Game Theory	75 / 84

Nash Equilil	oria in Zero-Sum	Games		BURG
Proof (ctd.)			Z	FRE
3 (ctd.)	vo con plug (12) into th	ao right hand side of	F (1 1)	Preliminarie and Examples
and obtain		n plug (12) into the right-hand side of		Solution Concepts and Notation
L	$u_2(x,y^*) \geq -u_1(x^*,y^*)$	for all $x \in A_1$.		Dominated Strategies
Again usin	Again using $u_1 = -u_2$, this is equivalent to			
0	-			Zero-Sum Games
	$u_1(x,y^*) \le u_1(x^*,y^*)$	for all $x \in A_1$.		Summary
In words, <i>x</i>	* is also a best response	nse to y^* .		
Hence, (x^*	$, y^*$) is a Nash equilibri	rium.		
SS 2019	B. Nebel, R. Mattmüller – Gam	ne Theory	79 / 84	

