Game Theory

2. Strategic Games

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2019

1 Preliminaries and Examples

JNI REIBURG

> Preliminaries and Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Strategic Games

FREIBU

Definition (Strategic game)

A strategic game is a tuple $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ where

- a nonempty finite set N of players,
- for each player $i \in N$, a nonempty set A_i of actions (or strategies), and
- for each player $i \in N$, a payoff function $u_i : A \to \mathbb{R}$, where $A = \prod_{i \in N} A_i$.

A strategic game G is called finite if A is finite.

A strategy profile is a tuple $a = (a_1, ..., a_{|N|}) \in A$.

Preliminaries and Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Strategic Games

FREIBUR

We can describe finite strategic games using payoff matrices.

Example: Two-player game where player 1 has actions T and B, and player 2 has actions L and R, with payoff matrix

		player 2		
		L	R	
player 1	Т	w_1, w_2	x_1, x_2	
	В	<i>y</i> ₁ , <i>y</i> ₂	z_1, z_2	

Read: If player 1 plays T and player 2 plays L then player 1 gets payoff w_1 and player 2 gets payoff w_2 , etc.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Example (Prisoner's Dilemma (informally))

Two prisoners are interrogated separately, and have the options to either cooperate (C) with their fellow prisoner and stay silent, or defect (D) and accuse the fellow prisoner of the crime.

Possible outcomes:

- Both cooperate: no hard evidence against either of them, only short prison sentences for both.
- One cooperates, the other defects: the defecting prisoner is set free immediately, and the cooperating prisoner gets a very long prison sentence.
- Both confess: both get medium-length prison sentences.

Preliminaries and Examples

Solution Concepts

Dominated Strategies

> Nash Equilibria

Zero-Sum Games

Prisoner's Dilemma

Preliminaries

Example (Prisoner's Dilemma (payoff matrix)) Strategies $A_1 = A_2 = \{C, D\}$.

player 2 $\begin{array}{c|cccc}
 & C & D \\
\hline
 & D & \\$

and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

An anti-coordination game:

Example (Hawk and Dove (informally))

In a fight for resources two players can behave either like a dove (D), yielding, or like a hawk (H), attacking.

Possible outcomes:

- Both players behave like doves: both players share the benefit.
- A hawk meets a dove: the hawk wins and gets the bigger part.
- Both players behave like hawks: the benefit gets lost completely because they will fight each other.

Preliminaries and Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Fauilibria

Zero-Sum Games

Hawk and Dove

FREIBU

Example (Hawk and Dove (payoff matrix)) Strategies $A_1 = A_2 = \{D, H\}$.

player 2

D
H

player 1

H
4,1
0,0

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Fauilibria

Zero-Sum

Matching Pennies

Preliminaries

A strictly competitive game:

Example (Matching Pennies (informally))

Two players can choose either heads (H) or tails (T) of a coin.

Possible outcomes:

- Both players make the same choice: player 1 receives one Euro from player 2.
- The players make different choices: player 2 receives one Euro from player 1.

and Examples

Example

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Matching Pennies

FREIBU

Example (Matching Pennies (payoff matrix))

Strategies $A_1 = A_2 = \{H, T\}$.

		player 2		
		Н	Τ	
player 1	Н	1,-1	-1, 1	
	Т	-1, 1	1,-1	

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Bach or Stravinsky (aka Battle of the Sexes)

UNI FREIBU

A coordination game:

Example (Bach or Stravinsky (informally))

Two persons, one of whom prefers Bach whereas the other prefers Stravinsky want to go to a concert together. For both it is more important to go to the same concert than to go to their favorite one. Let *B* be the action of going to the Bach concert and *S* the action of going to the Stravinsky concert.

Possible outcomes:

- Both players make the same choice: the player whose preferred option is chosen gets high payoff, the other player gets medium payoff.
- The players make different choices: they both get zero payoff.

Preliminaries and Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Equilibria

Zero-Sum Games

Bach or Stravinsky (aka Battle of the Sexes)

FREIBUR

Example (Bach or Stravinsky (payoff matrix))

Strategies $A_1 = A_2 = \{B, S\}$.

Stravinsky enthusiast

Bach enthusiast $\begin{bmatrix} B & S \\ B & 2,1 & 0,0 \\ S & 0,0 & 1,2 \end{bmatrix}$

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

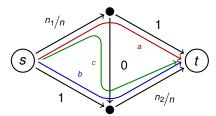
Nash Equilibria

Zero-Sum

Congestion Game

NI

Example (A congestion game)



player 2

		а	b	С
	а	-2,-2	-1.5, -1.5	-2,-1.5
player 1	b	-1.5, -1.5	-2,-2	-2,-1.5
	С	-1.5, -2	-1.5, -2	-2,-2

Preliminaries and Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

2 Solution Concepts and Notation

Drelimineri

Preliminaries and

Solution Concepts

and Notation

Dominated
Strategies

Nash Equilibria

Zero-Sum

Solution Concepts and Notation

INI REIRURG

Question: What is a "solution" of a strategic game?

Answer:

- A strategy profile where all players play strategies that are rational (i. e., in some sense optimal).
- Note: There are different ways of making the above item precise (different solution concepts).
- A solution concept is a formal rule for predicting how a game will be played.

In the following, we will consider some solution concepts:

- Iterated dominance
- Nash equilibrium
- (Subgame-perfect equilibrium)

Preliminari and

Solution Concepts and Notation

Dominated

Nash Fauilibria

Zero-Sum

Summarv

Solution Concepts and Notation

FREIBU

Notation: we want to write down strategy profiles where one player's strategy is removed or replaced.

Let $a = (a_1, ..., a_{|N|}) \in A = \prod_{i \in N} A_i$ be a strategy profile.

We write:

- $\blacksquare A_{-i} := \prod_{j \in N \setminus \{i\}} A_j$
- $\blacksquare a_{-i} := (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{|N|}), \text{ and }$
- $(a_{-i},a'_i) := (a_1,\ldots,a_{i-1},a'_i,a_{i+1},\ldots,a_{|N|}).$

Example

Let $A_1 = \{T, B\}$, $A_2 = \{L, R\}$, $A_3 = \{X, Y, Z\}$, and a := (T, R, Z). Then $a_{-1} = (R, Z)$, $a_{-2} = (T, Z)$, $a_{-3} = (T, R)$. Moreover, $(a_{-2}, L) = (T, L, Z)$. Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum

Carries

3 Dominated Strategies

PREB

- Strictly Dominated Strategies
- Weakly Dominated Strategies

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

Question: What strategy should an agent avoid?

One answer:

- Eliminate all obviously irrational strategies.
- A strategie is obviously irrational if there is another strategy that is always better, no matter what the other players do.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated

Strictly Dominated Strategies

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum

FREIBU

Definition (Strictly dominated strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A strategy $a_i \in A_i$ is called strictly dominated in G if there is a strategy $a_i^+ \in A_i$ such that for all strategy profiles $a_{-i} \in A_{-i}$,

$$u_i(a_{-i},a_i) < u_i(a_{-i},a_i^+).$$

We say that a_i^+ strictly dominates a_i .

If $a_i^+ \in A_i$ strictly dominates every other strategy $a_i' \in A_i \setminus \{a_i^+\}$, we call a_i^+ strictly dominant in G.

Remark: Playing strictly dominated strategies is irrational.

Preliminarie and

Examp

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

This suggest a solution concept: iterative elimination of strictly dominated strategies:

while some strictly dominated strategy is left:eliminate some strictly dominated strategyif a unique strategy profile remains:this unique profile is the solution

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies

Strategies

Nash Fauilibria

Zero-Sum

FREIBUR

Example (Iterative elimination of strictly dominated strategies for the prisoner's dilemma)

player 2

C D

player 1 C 3,

D

3,3	0,4
4,0	1,1

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated Strategies

Nash

Zero-Sum

Example (Iterative elimination of strictly dominated strategies for the prisoner's dilemma)

player 2

X D 4.0 1,1

player 1

Step 1: eliminate row C (strictly dominated by row D)

and

and Notation

Strictly Dominated Strategies

Zero-Sum

FREIBUR

Example (Iterative elimination of strictly dominated strategies for the prisoner's dilemma)

player 2

and Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum Games

Summary

■ Step 2: eliminate column *C* (strictly dominated by col. *D*)

[■] Step 1: eliminate row *C* (strictly dominated by row *D*)

FREIBUR

Example (Iterative elimination of strictly dominated strategies for the prisoner's dilemma)

Step 1: eliminate row C (strictly dominated by row D)

■ Step 2: eliminate column *C* (strictly dominated by col. *D*)

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum Games

player 1

Example (Iterative elim. of strictly dominated strategies)

player	2
--------	---

R

В

_, .	0,0
1,2	2,1
0,0	1,1

and

and Notation

Strictly Dominated

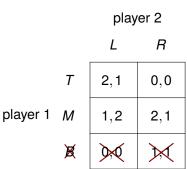
Strategies Strategies

Nash

Zero-Sum

JNI REIBURG

Example (Iterative elim. of strictly dominated strategies)



■ Step 1: eliminate row *B* (strictly dominated by row *M*)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Strategies

Zero-Sum

JNI

Example (Iterative elim. of strictly dominated strategies)

		player 2	
		L	X
	Т	2,1) ,Q
olayer 1	Μ	1,2	3 ×(
	×) ,Q	>

- Step 1: eliminate row B (strictly dominated by row M)
- Step 2: eliminate column *R* (strictly dominated by col. *L*)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

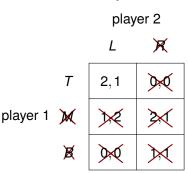
Strictly Dominated Strategies Weakly Dominated

Strategies

Nash Equilibria

Zero-Sum Games

Example (Iterative elim. of strictly dominated strategies)



- Step 1: eliminate row *B* (strictly dominated by row *M*)
- Step 2: eliminate column *R* (strictly dominated by col. *L*)
- Step 3: eliminate row M (strictly dominated by row T)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

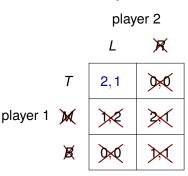
Weakly Dominat Strategies

> Nash Equilibria

Zero-Sum Games

JNI REIBURG

Example (Iterative elim. of strictly dominated strategies)



- Step 1: eliminate row *B* (strictly dominated by row *M*)
- Step 2: eliminate column *R* (strictly dominated by col. *L*)
- Step 3: eliminate row M (strictly dominated by row T)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Weakly Dominal Strategies

Nash Equilibria

Zero-Sum Games

UNI FREIBURG

Example (Iterative elimination of strictly dominated strategies for Bach or Stravinsky)

Stravinsky enthusiast

Bach enthusiast $\begin{bmatrix} B & S \\ B & 2,1 & 0,0 \\ S & 0,0 & 1,2 \end{bmatrix}$

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies

Strategies

Nash Equilibria

Zero-Sum Games

Example (Iterative elimination of strictly dominated strategies for Bach or Stravinsky)

Stravinsky enthusiast

		В	S
Bach enthusiast	В	2,1	0,0
	S	0,0	1,2

- No strictly dominated strategies.
- All strategies survive iterative elimination of strictly dominated strategies.
- All strategies rationalizable.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum Games

PRE E

Remark

Strict dominance between actions is rather rare. We should identify more constraints on "solutions", better solution concepts.

Proposition

The result of iterative elimination of strictly dominated strategies is unique, i. e., independent of the elimination order.

Proof.

Homework.

Preliminarie and

Example

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum Games

FRE BU

Definition (Weakly dominated strategy)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game.

A strategy $a_i \in A_i$ is called weakly dominated in G if there is a strategy $a_i^+ \in A_i$ such that for all profiles $a_{-i} \in A_{-i}$,

$$u_i(a_{-i},a_i) \leq u_i(a_{-i},a_i^+)$$

and that for at least one profile $a_{-i} \in A_{-i}$,

$$u_i(a_{-i}, a_i) < u_i(a_{-i}, a_i^+).$$

We say that a_i^+ weakly dominates a_i .

If $a_i^+ \in A_i$ weakly dominates every other strategy $a_i' \in A_i \setminus \{a_i^+\}$, we call a_i^+ weakly dominant in G.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

What about iterative elimination of weakly dominated strategies as a solution concept?

Let's see what happens.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominate Strategies

Weakly Dominated Strategies

Nash Equilibria

Zero-Sum

player 1

JNI

Example (Iterative elim. of weakly dominated strategies)

player	2
--------	---

	L	R
Τ	2,1	0,0
Μ	2,1	1,1
В	0,0	1,1

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies

Weakly Dominated Strategies

Nash Equilibria

Zero-Sum

JNI REIBURG

Example (Iterative elim. of weakly dominated strategies)

		player 2	
		L	R
	T	2,1	0,0
olayer 1	Μ	2,1	1,1
	×) ,Q	×

Step 1: eliminate row B (weakly dominated by row M, $u_1(M,L) = 2 > 0 = u_1(B,L)$ and $u_1(M,R) = 1 = u_1(B,R)$)

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated

Strategies

Nash Equilibria

Zero-Sum Games

JNI

Example (Iterative elim. of weakly dominated strategies)

		player 2	
		L	X
	Т	2,1	>
olayer 1	Μ	2,1	X
	×) ,Q	×

- Step 1: eliminate row B (weakly dominated by row M, $u_1(M,L) = 2 > 0 = u_1(B,L)$ and $u_1(M,R) = 1 = u_1(B,R)$)
- Step 2: eliminate column R (weakly dominated by col. L)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated

Strategies

Nash Equilibria

Zero-Sum Games

JNI REIBURG

Example (Iterative elim. of weakly dominated strategies)

		player 2	
		L	×
	Т	2,1	>
olayer 1	М	2,1	×
	×) ,Q	×

- Step 1: eliminate row B (weakly dominated by row M, $u_1(M,L) = 2 > 0 = u_1(B,L)$ and $u_1(M,R) = 1 = u_1(B,R)$)
- Step 2: eliminate column *R* (weakly dominated by col. *L*)

Here, two solution profiles remain.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated
Strategies

Nash

Zero-Sum Games

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominate Strategies

Weakly Dominated Strategies

Iterative elimination of weakly dominated strategies:

- leads to smaller games,
- can also lead to situations where only a single solution remains.
- but: the result can depend on the elimination order! (see example on next slide)

player 1

UNI FREIBUR

Example (Iterative elim. of weakly dominated strategies)

player	2
--------	---

	L	R
Τ	2,1	0,0
Μ	2,1	1,1
В	0,0	1,1

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Strategies

Nash Equilibria

Zero-Sum Games

player 1

REIBURG

Example (Iterative elim. of weakly dominated strategies)

player 2

R

X 2.1 1.1
B 0.0 1.1

Step 1: eliminate row T (weakly dominated by row M)

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Strategies
Weakly Dominated

Weakly Dominate Strategies

Nash Equilibria

Zero-Sum

UNI FREIBURG

Example (Iterative elim. of weakly dominated strategies)

		play	er 2
		X	R
	X	>	>
player 1	Μ	> <	1,1
	В) ,Q	1,1

- Step 1: eliminate row T (weakly dominated by row M)
- Step 2: eliminate column L (weakly dominated by col. R)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominate Strategies

Weakly Dominated Strategies

Nash Equilibria

Zero-Sum Games

JNI REIBURG

Example (Iterative elim. of weakly dominated strategies)

		player 2	
		X	R
	X	> <) (
player 1	Μ	> <	1,1
	В) ,Q	1,1

- Step 1: eliminate row *T* (weakly dominated by row *M*)
- Step 2: eliminate column *L* (weakly dominated by col. *R*)

Different elimination order, different result, even different payoffs (1, 1 vs. 2, 1)!

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Strictly Dominated Strategies Weakly Dominated

Weakly Dominat Strategies

Nash Equilibria

Zero-Sum Games

- **Definitions and Examples**
- Example: Sealed-Bid Auctions
- Iterative Elimination and Nash Equilibria

and

and Notation

Nash Equilibria

Auctions Iterative

Nash Equilibria

Zero-Sum

FREBL

Question: Which strategy profiles are stable?

Possible answer:

- Strategy profiles where no player benefits from playing a different strategy
- Equivalently: Strategy profiles where every player's strategy is a best response to the other players' strategies

Such strategy profiles are called Nash equilibria, one of the most-used solution concepts in game theory.

Remark: In following examples, for non-Nash equilibria, only one possible profitable deviation is shown (even if there are more).

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Equilibria

Equilibria Definitions and

Examples
Example:

Auctions
Iterative
Elimination and

Zero-Sum

Summarv

Definition (Nash equilibrium)

A Nash equilibrium of a strategic game $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a strategy profile $a^* \in A$ such that for every player $i \in N$,

 $u_i(a^*) \geq u_i(a_{-i}^*, a_i)$ for all $a_i \in A_i$.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Fauilibria

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and

Zero-Sum Games

FREIBUR

Remark: There is an alternative definition of Nash equilibria (which we consider because it gives us a slightly different perspective on Nash equilibria).

Definition (Best response)

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game, $i \in N$ a player, and $a_{-i} \in A_{-i}$ a strategy profile of the players other than i. Then a strategy $a_i \in A_i$ is a best response of player i to a_{-i} if

$$u_i(a_{-i}, a_i) \ge u_i(a_{-i}, a_i')$$
 for all $a_i' \in A_i$.

We write $B_i(a_{-i})$ for the set of best responses of player i to a_{-i} . For a strategy profile $a \in A$, we write $B(a) = \prod_{i \in N} B_i(a_{-i})$. Preliminarie and

Examples

Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and Examples

Example: Sealed-Bid

Auctions Iterative Elimination and Nash Equilibria

Zero-Sum Games

Summarv

FREIBU

Definition (Nash equilibrium, alternative 1)

A Nash equilibrium of a strategic game $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a strategy profile $a^* \in A$ such that for every player $i \in N$, $a_i^* \in B_i(a_{-i}^*)$.

Definition (Nash equilibrium, alternative 2)

A Nash equilibrium of a strategic game $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a strategy profile $a^* \in A$ such that $a^* \in B(a^*)$.

Proposition

The three definitions of Nash equilibria are equivalent.

Proof.

Homework.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Equilibria

Definitions and Examples

Example: Sealed-Bid

Auctions
Iterative
Elimination and
Nash Equilibria

Zero-Sum Games

UNI FREIBURG

Example (Nash Equilibria in the Prisoner's Dilemma)

player 2

C D

player 1

C

3,3	0,4
4,0	1,1

 \blacksquare (C, C): No Nash equilibrium (player 1: $C \rightarrow D$)

 \blacksquare (C,D): No Nash equilibrium (player 1: $C \to D$)

 \blacksquare (*D*, *C*): No Nash equilibrium (player 2: $C \rightarrow D$)

■ (D,D): Nash equilibrium!

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and Examples

Example: Sealed-Bid

terative Elimination and

Zero-Sum

UNI FREIBURG

Example (Nash Equilibria in Hawk and Dove)

player 2

D H
D 3,3 1,4

player 1

H 4,1 0,0

 \blacksquare (D,D): No Nash equilibrium (player 1: D \rightarrow H)

■ (D,H): Nash equilibrium!

■ (H,D): Nash equilibrium!

 \blacksquare (*H*, *H*): No Nash equilibrium (player 1: $H \rightarrow D$)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

JNI

Example (Nash Equilibria in Matching Pennies)

player	2
--------	---

		Н	Τ
player 1	Н	1,-1	-1, 1
	T	-1, 1	1,-1

 \blacksquare (H,H): No Nash equilibrium (player 2: $H \to T$)

 \blacksquare (*H*, *T*): No Nash equilibrium (player 1: *H* \rightarrow *T*)

 \blacksquare (*T*,*H*): No Nash equilibrium (player 1: *T* \rightarrow *H*)

 \blacksquare (T, T): No Nash equilibrium (player 2: $T \rightarrow H$)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Sealed-Bid Auctions Iterative

Elimination and Nash Equilibria

Games

UNI FREIBURG

Example (Nash Equilibria in Bach or Stravinsky)

Stravinsky enthusiast

Bach enthusiast $\begin{bmatrix} B & S \\ B & 2,1 & 0,0 \\ S & 0,0 & 1,2 \end{bmatrix}$

- (B,B): Nash equilibrium!
- \blacksquare (B,S): No Nash equilibrium (player 1: B \rightarrow S)
- \blacksquare (S,B): No Nash equilibrium (player 2: $S \rightarrow B$)
- (S,S): Nash equilibrium!

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBUR

We consider a slightly larger example: sealed-bid auctions

Setting:

- An object has to be assigned to a winning bidder in exchange for a payment.
- For each player ("bidder") i = 1, ..., n, let v_i be the private value that bidder i assigns to the object. (We assume that $v_1 > v_2 > \cdots > v_n > 0$.)
- The bidders simultaneously give their bids $b_i \ge 0$, i = 1,...,n.
- The object is given to the bidder i with the highest bid b_i . (Ties are broken in favor of bidders with lower index, i.e., if $b_i = b_i$ are the highest bids, then bidder i will win iff i < j.)

Preliminari and

Solution

and Notation

Dominated

Strategies

Equilibria Definitions and

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

Summarv

FREIBUR

Question: What should the winning bidder have to pay?

One possible answer: The highest bid.

Definition (First-price sealed-bid auction)

- **N** $= {1,...,n} with <math>v_1 > v_2 > \cdots > v_n > 0,$
- \blacksquare $A_i = \mathbb{R}_0^+$ for all $i \in \mathbb{N}$,
- Bidder $i \in N$ wins if b_i is maximal among all bids (+ possible tie-breaking by index), and
- $u_i(b) = \begin{cases} 0 & \text{if player } i \text{ does not win} \\ v_i b_i & \text{otherwise} \end{cases}$ where $b = (b_1, \dots, b_n)$.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBU

Example (First-price sealed-bid auction)

Assume three bidders 1, 2, and 3, with valuations and bids

$$v_1 = 100,$$

$$v_2 = 80,$$

$$v_3 = 53$$
,

$$b_1 = 90,$$
 $b_2 = 85,$

$$b_3 = 45.$$

Observations:

- Bidder 1 wins, pays 90, gets utility $u_1(b) = v_1 b_1 = 100 90 = 10$.
- Bidders 2 and 3 pay nothing, get utility 0.
- (Bidder 2 over-bids.)
- Bidder 1 could still win, but pay less, by bidding $b'_1 = 85$ instead. Then $u_1(b_{-1}, b'_1) = v_1 b'_1 = 100 85 = 15$.

Preliminaries

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

UNI FREIBURG

Question: How to avoid untruthful bidding and incentivize truthful revelation of private valuations?

Different answer to question about payments: Winner pays the second-highest bid.

Definition (Second-price sealed-bid auction)

$$\blacksquare N = \{1, ..., n\} \text{ with } v_1 > v_2 > \cdots > v_n > 0,$$

$$\blacksquare$$
 $A_i = \mathbb{R}_0^+$ for all $i \in N$,

Bidder $i \in N$ wins if b_i is maximal among all bids (+ possible tie-breaking by index), and

$$u_i(b) = \begin{cases} 0 & \text{if player } i \text{ does not win} \\ v_i - \max b_{-i} & \text{otherwise} \end{cases}$$
where $b = (b_1, \dots, b_n)$.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBUR

Example (Second-price sealed-bid auction)

Assume three bidders 1, 2, and 3, with valuations and bids

$$v_1 = 100,$$

$$v_2 = 80,$$

$$v_3 = 53$$
,

$$b_1 = 90,$$

$$b_2 = 85,$$

$$b_3 = 45.$$

Observations:

- Bidder 1 wins, pays 85, gets utility $u_1(b) = v_1 b_2 = 100 85 = 15$.
 - Bidders 2 and 3 pay nothing, get utility 0.
- Bidder 1 has no incentive to bid strategically and guess the other bidders' private valuations.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBU

Proposition

In a second-price sealed-bid auction, bidding ones own valuation, $b_i^+ = v_i$, is a weakly dominant strategy.

Proof.

We have to show that b_i^+ weakly dominates every other strategy b_i of player i.

For that, it suffices to show that

- for all $b_i \in A_i$, we have $u_i(b_{-i},b_i^{\dagger}) \geq u_i(b_{-i},b_i)$ for all $b_{-i} \in A_{-i}$, and that
- for all $b_i \in A_i$, we have $u_i(b_{-i}, b_i^+) > u_i(b_{-i}, b_i)$ for at least one $b_{-i} \in A_{-i}$.

Preliminaries

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

> Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

Summarv

FREIBL

Proof (ctd.)

Ad (1) [regardless of what the other bidders do, b_i^+ is always a best response]:

- Case I) bidder i wins: bidder i pays $\max b_{-i} \le v_i$, gets $u_i(b_{-i}, b_i^+) \ge 0$.
 - Case I.a) bidder i decreases bid: this does not help, since he might still win and pay the same as before, or lose and get utility 0.
 - Case I.b) bidder i increases bid: bidder i still wins and pays the same as before.

Preliminaries

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBU

```
Proof (ctd.)
```

Ad (1) (ctd.):

■ Case II) bidder *i* loses: bidder *i* pays nothing, gets $u_i(b_{-i}, b_i^+) = 0$.

- Case II.a) bidder *i* decreases bid: bidder *i* still loses and gets utility 0.
- Case II.b) bidder i increases bid: either bidder i still loses and gets utility 0, or becomes the winner and pays more than the object is worth to him, leading to a negative utility.

Preliminarie

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

UNI FREIBU

Proof (ctd.)

Ad (2) [for each alternative b_i to b_i^+ , there is an opponent profile b_{-i} against which b_i^+ is strictly better than b_i]:

Let b_i be some strategy other than b_i^+ .

- Case I) $b_i < b_i^+$: Consider b_{-i} with $b_i < \max b_{-i} < b_i^+$. With b_i , bidder i does not win any more, i. e., we have $u_i(b_{-i}, b_i^+) > 0 = u_i(b_{-i}, b_i)$.
- Case II) $b_i > b_i^+$:
 Consider b_{-i} with $b_i > \max b_{-i} > b_i^+$.
 With b_i , bidder i overbids and pays more than the object is worth to him, i. e., we have $u_i(b_{-i}, b_i^+) = 0 > u_i(b_{-i}, b_i)$.

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

Summarv

UNI FREIBI

Proposition

Profiles of weakly dominant strategies are Nash equilibria.

Proof.

Homework.

Proposition

In a second-price sealed-bid auction, if all bidders bid their true valuations, this is a Nash equilibrium.

Proof.

Follows immediately from the previous two propositions.

Remark: This is not the only Nash equilibrium in second-price sealed-bid auctions, though.

Preliminarie and

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Definitions and Examples

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

Motivation: We have seen two different solution concepts,

- Surviving iterative elimination of (strictly) dominated strategies and
- Nash equilibria.

Obvious question: Is there any relationship between the two?

Answer: Yes, Nash equilibria refine the concept of iterative elimination of strictly dominated strategies. We will formalize this on the next slides

and Notation

Itorativo Elimination and Nash Equilibria

Zero-Sum

FREIBU

Lemma (preservation of Nash equilibria)

Let G and G' be two strategic games where G' is obtained from G by elimination of one strictly dominated strategy. Then a strategy profile a^* is a Nash equilibrium of G if and only if it is Nash equilibrium of G'.

Proof.

Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ and $G' = \langle N, (A'_i)_{i \in N}, (u'_i)_{i \in N} \rangle$.

Let a'_i be the eliminated strategy.

Then there is a strategy a_i^+ such that for all $a_{-i} \in A_{-i}$,

$$u_i(a_{-i}, a_i') < u_i(a_{-i}, a_i^+).$$
 (1)

Preliminaries

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Equilibria

Examples Example:

Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

FREIBUR

Proof (ctd.)

" \Rightarrow ": Let a^* be a Nash equilibrium of G.

Nash equilibrium strategies are not eliminated: For players $j \neq i$, this is clear, because none of their strategies are eliminated.

For player i, action a_i^* is a best response to a_{-i}^* , and in particular at least as good a response as a_i^+ :

$$u_i(a_{-i}^*, a_i^*) \ge u_i(a_{-i}^*, a_i^*).$$

With (1) $u_i(a_{-i}, a_i^+) > u_i(a_{-i}, a_i')$, we get $u_i(a_{-i}^*, a_i^*) > u_i(a_{-i}^*, a_i')$ and hence $a_i^* \neq a_i'$.

Thus, the Nash equilibrium strategy a_i^* is not eliminated.

Preliminarie

Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Equilibria

Equilibria

Example:

sealed-Bid auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

JNI

Proof (ctd.)

"⇒" (ctd.):

■ Best responses remain best responses: For all players $j \in N$, a_j^* is a best response to a_{-j}^* in G. Since in G', no potentially better responses are introduced $(A_j' \subseteq A_j)$ and the payoffs are unchanged, this also holds in G'.

Hence, a^* is also a Nash equilibrium of G'.

" \Leftarrow ": Let a^* be a Nash equilibrium of G'.

■ For player $j \neq i$: a_j^* is a best response to a_{-j}^* in G as well, since the responses available to player j in G and G' are the same.

Preliminaries

Examples

Solution Concepts and Notation

Dominated Strategies

> Nash Equilibria

Equilibria Definitions as

Example: Sealed-Bid

Sealed-Bid Auctions Iterative

Elimination and Nash Equilibria

Zero-Sum Games

Proof (ctd.)

"⇐" (ctd.):

■ For player i: Since $A_i = A_i' \cup \{a_i\}$ and a_i^* is a best response to a_{-i}^* among the strategies in A_i' , it suffices to show that a_i is no better response.

Because a^* is a Nash equilibrium in G' and a_i^+ is a strategy in A_i' , we have $u_i(a_{-i}^*, a_i^*) \ge u_i(a_{-i}^*, a_i^*)$.

Since a_i^+ strictly dominates a_i , we have

 $u_i(a_{-i}^*, a_i^*) > u_i(a_{-i}^*, a_i)$, and hence $u_i(a_{-i}^*, a_i^*) > u_i(a_{-i}^*, a_i)$.

Therefore, a_i cannot be a better response to a_{-i}^* than a_i^* .

Hence, a^* is also a Nash equilibrium of G.

Preliminarie

Example

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Equilibria Definitions ar

Examples
Example:

Example: Sealed-Bid Auctions

Iterative Elimination and Nash Equilibria

Zero-Sum Games

Summarv

FREIBU

Corollary

If iterative elimination of strictly dominated strategies results in a *unique* strategy profile a^* , then a^* is the unique Nash equilibrium of the original game.

Proof.

Assume that a^* is the unique remaining strategy profile. By definition, a^* must be a Nash equilibrium of the remaining game.

We can inductively apply the previous lemma (preservation of Nash equilibria) and see that a^* (and no other strategy profile) must have been a Nash equilibrium before the last elimination step, and before that step, ..., and in the original game.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash

Equilibria

Definitions an

Example: Sealed-Bid Auctions

Auctions Iterative

Elimination and Nash Equilibria

Zero-Sum Games

Z H

Preliminaries and

Example

Solution Concepts and Notation

Strategies

Nash Equilibria

Zero-Sum Games

Playing it Safe (in Two-Player Games)

FREIBU

Motivation: What happens if both players try to "play it safe"?

Question: What does it even mean to "play it safe"?

Answer: Choose a strategy that guarantees the highest worst-case payoff.

Preliminarie and

Solution

and Notation

Strategies

Nash Equilibria

> Zero-Sum Games

Playing it Safe (in Two-Player Games)

UNI FREIBU

and

Nash

Zero-Sum Games

Summary

and Notation

Example

		player 2		
		L	R	
	T	2,1	2,-20	
player 1	Μ	3,0	-10, 1	
	В	-100,2	3, 3	

```
Worst-case payoff for player 1:
```

 $\blacksquare \quad \text{if playing } T \colon \mathbf{2}$

■ if playing M: -10

■ if playing B: -100

 \rightsquigarrow play T.

Worst-case payoff for player 2:

■ if playing *L*: 0

■ if playing R: -20

 \rightsquigarrow play L.

However: Unlike (B,R), the profile (T,L) is not a Nash equilibrium.

Playing it Safe (in Two-Player Games)

JNI

and

Nash

Zero-Sum Games

Summary

and Notation

Example

		player 2		
		L	R	
	T	2,1	2,-20	
player 1	Μ	3,0	-10, 1	
	В	-100,2	3, 3	

Worst-case payoff for player 1:

■ if playing *T*: 2

■ if playing M: -10

■ if playing B: -100

 \rightsquigarrow play T.

Worst-case payoff for player 2:

■ if playing L: 0

■ if playing R: -20

 \rightsquigarrow play L.

However: Unlike (B,R), the profile (T,L) is not a Nash equilibrium.

Playing it Safe (in Two-Player Games)

NI

and

Nash

Zero-Sum Games

Summary

and Notation

Example

		player 2			
		L	R		
player 1	Т	2,1	2,-20		
	Μ	3,0	-10, 1		
	В	-100,2	3, 3		

```
Worst-case payoff for player 1:
```

 $\blacksquare \quad \text{if playing } T \colon \mathbf{2}$

■ if playing M: -10

■ if playing B: -100

 \rightsquigarrow play T.

Worst-case payoff for player 2:

■ if playing L: 0

■ if playing R: -20

 \rightsquigarrow play L.

However: Unlike (B,R), the profile (T,L) is not a Nash equilibrium.

Playing it Safe (in Two-Player Games)

FREIBU

Observation: In general, pairs of maximinimizers, like (T,L) in the example above, are not the same as Nash equilibria.

Claim: However, in zero-sum games, pairs of maximinimizers and Nash equilibria are essentially the same.

(Tiny restriction: This does not hold if the considered game has no Nash equilibrium at all, because unlike Nash equilibria, pairs of maximinimizers always exist.)

Reason (intuitively): In zero-sum games, the worst-case assumption that the other player tries to harm you as much as possible is justified, because harming the other is the same as maximizing ones own payoff. Playing it safe is rational.

Preliminari and

Solution Concepts and Notation

Dominated Strategies

> Nash Fauilibria

Zero-Sum Games

Zero-Sum Games

HE HE

Definition (Zero-sum game)

A zero-sum game is a strategic game $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and

$$u_1(a) = -u_2(a)$$

for all $a \in A$.

Example (Matching Pennies as a zero-sum game)

player 2

		Н	Τ
player 1	Н	1,-1	-1, 1
	Τ	-1, 1	1,-1

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Cames

FREIBU

Definition (Maximinimizer)

Let $G = \langle \{1,2\}, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a zero-sum game.

An action $x^* \in A_1$ is called maximinimizer for player 1 in G if

$$\min_{y \in A_2} u_1(x^*, y) \ge \min_{y \in A_2} u_1(x, y) \qquad \text{for all } x \in A_1,$$

and $y^* \in A_2$ is called maximinimizer for player 2 in G if

$$\min_{x \in A_1} u_2(x, y^*) \ge \min_{x \in A_1} u_2(x, y) \qquad \text{for all } y \in A_2.$$

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

UNI

Example (Zero-sum game with three actions each)

		player 2		
		L	C	R
player 1	T	8, -8	3,-3	-6, 6
	Μ	2,-2	-1, 1	3,-3
	В	-6, 6	4, -4	8, -8

Guaranteed worst-case payoffs:

- T: -6, M: -1, $B: -6 \rightsquigarrow$ maximinimizer M
- $L: -8, C: -4, R: -8 \rightarrow \text{maximinimizer } C$
- → pair of maximinimizers (M, C) with payoffs (-1,1)

 (not a Nash equilibrium; this game has no Nash equilibrium.)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

JNI

Example (Maximinimization vs. minimaximization)

player 2

and Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Summary

Worst-case payoffs (player 2): Best-case payoffs (player 1):

■ L: -1. R: -2

■ L: +1, R: +2

■ Maximize: -1

■ Minimize: +1

Observation: Results identical up to different sign.

Lemma

Let $G = \langle \{1,2\}, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a zero-sum game. Then

$$\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y). \tag{2}$$

Proof.

For any real-valued function f, we have

$$\min_{z} -f(z) = -\max_{z} f(z). \tag{3}$$

Preliminar and

Solution Concepts and Notation

Dominated

Nash

Zero-Sum Games

A B -

Proof (ctd.)

Thus, for all $y \in A_2$,

$$-\min_{y \in A_2} \max_{x \in A_1} u_1(x,y) \stackrel{(3)}{=} \max_{y \in A_2} -\max_{x \in A_1} u_1(x,y)$$

$$= \max_{y \in A_2} \min_{x \in A_1} -u_1(x,y)$$

$$ZS = \max_{y \in A_2} \min_{x \in A_1} u_2(x, y).$$

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

> Zero-Sum Games

FRE BC

Now, we are ready to prove our main theorem about zero-sum games and Nash equilibria.

In zero-sum games:

- Every Nash equilibrium is a pair of maximinimizers.
- All Nash equilibria have the same payoffs.
- If there is at least one Nash equilibrium, then every pair of maximinimizers is a Nash equilibrium.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibri

Equilibri

Zero-Sum Games

Theorem (Maximinimizer theorem)

Let $G = \langle \{1,2\}, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a zero-sum game. Then:

- If (x^*, y^*) is a Nash equilibrium of G, then x^* and y^* are maximinimizers for player 1 and player 2, respectively.
- If (x^*, y^*) is a Nash equilibrium of G, then

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x,y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x,y) = u_1(x^*,y^*).$$

If $\max_{x \in A_1} \min_{y \in A_2} u_1(x,y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x,y)$, and x^* and y^* maximinimizers of player 1 and player 2 respectively, then (x^*,y^*) is a Nash equilibrium.

Preliminar and

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum

Games

FREIB B

Proof.

Let (x^*, y^*) be a Nash equilibrium. Then

$$u_2(x^*, y^*) \ge u_2(x^*, y)$$
 for all $y \in A_2$.

With $u_1 = -u_2$, this implies

$$u_1(x^*, y^*) \le u_1(x^*, y)$$
 for all $y \in A_2$.

Thus

$$u_1(x^*, y^*) = \min_{y \in A_2} u_1(x^*, y) \le \max_{x \in A_1} \min_{y \in A_2} u_1(x, y).$$
 (4)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREB - B

Proof (ctd.)

1 (ctd.)

Furthermore, since (x^*, y^*) is a Nash equilibrium, also

$$u_1(x^*, y^*) \ge u_1(x, y^*)$$
 for all $x \in A_1$.

Hence

$$u_1(x^*,y^*) \ge \max_{x \in A_1} u_1(x,y^*).$$

This implies

$$u_1(x^*, y^*) \ge \max_{x \in A_1} \min_{y \in A_2} u_1(x, y).$$
 (5)

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREB --

Proof (ctd.)

Inequalities (4) and (5) together imply that

$$u_1(x^*, y^*) = \max_{x \in A_1} \min_{y \in A_2} u_1(x, y).$$
 (6)

Thus, x^* is a maximinimizer for player 1.

Similarly, we can show that y^* is a maximinimizer for player 2:

$$u_2(x^*, y^*) = \max_{y \in A_2} \min_{x \in A_1} u_2(x, y).$$
 (7)

Preliminarie and

Examples

Solution Concepts and Notation

Dominated

Nash Equilibri

Zero-Sum Games

FREIBU

Proof (ctd.)

We only need to put things together:

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) \stackrel{\text{(6)}}{=} u_1(x^*, y^*)$$

$$\stackrel{\text{ZS}}{=} -u_2(x^*, y^*)$$

$$\stackrel{\text{(7)}}{=} -\max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$$

$$\stackrel{\text{(2)}}{=} \min_{y \in A_2} \max_{x \in A_1} u_1(x, y).$$

In particular, it follows that all Nash equilibria share the same payoff profile.

Preliminarie and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

> Zero-Sum Games

JNI REIBUR

Proof (ctd.)

Let x^* and y^* be maximinimizers for player 1 and 2, respectively, and assume that

$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y) =: v^*.$$
 (8)

With Equation (2) from the previous lemma, we get

$$\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -v^*.$$
 (9)

With x^* and y^* being maximinimizers, (8) and (9) imply

$$u_1(x^*,y) \ge v^*$$
 for all $y \in A_2$, and (10)

$$u_2(x, y^*) > -v^*$$
 for all $x \in A_1$. (11)

Preliminarie and

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FRE B

Proof (ctd.)

3 (ctd.)

Special cases of (10) and (11) for $x = x^*$ and $y = y^*$:

$$u_1(x^*, y^*) \ge v^*$$

and

$$u_2(x^*,y^*) \geq -v^*$$
.

With $u_1 = -u_2$, the latter is equivalent to $u_1(x^*, y^*) \le v^*$, which gives us

$$u_1(x^*, y^*) = v^*.$$
 (12)

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

> Zero-Sum Games

Proof (ctd.)

3 (ctd.)

Plugging (12) into the right-hand side of (10) gives us

$$u_1(x^*,y) \ge u_1(x^*,y^*)$$
 for all $y \in A_2$.

With $u_1 = -u_2$, this is equivalent to

$$u_2(x^*,y) \le u_2(x^*,y^*)$$
 for all $y \in A_2$.

In other words, y^* is a best response to x^* .

Preliminaries and

Examples

Solution Concepts and Notation

Dominated Strategies

Nash Equilibri

> Zero-Sum Games

EREIBU

Proof (ctd.)

3 (ctd.)

Similarly, we can plug (12) into the right-hand side of (11) and obtain

$$u_2(x,y^*) \ge -u_1(x^*,y^*)$$
 for all $x \in A_1$.

Again using $u_1 = -u_2$, this is equivalent to

$$u_1(x,y^*) \le u_1(x^*,y^*)$$
 for all $x \in A_1$.

In words, x^* is also a best response to y^* .

Hence, (x^*, y^*) is a Nash equilibrium.

Preliminari and

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

Corollary

Let $G = \langle \{1,2\}, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a zero-sum game, and let (x_1^*, y_1^*) and (x_2^*, y_2^*) be two Nash equilibria of G.

Then (x_1^*, y_2^*) and (x_2^*, y_1^*) are also Nash equilibria of G.

In other words: Nash equilibria of zero-sum games can be arbitrarily recombined.

Preliminarie and

Examples

Concepts and Notation

Dominated Strategies

Nash Equilibri

> Zero-Sum Games

UNI

Proof.

With part (1) of the maximinimizer theorem, we get that x_1^* and x_2^* are maximinimizers for player 1 and that y_1^* and y_2^* are maximinimizers for player 2.

With part (2) of the maximinimizer theorem, we get that $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$.

With this equality, with x_1^* , x_2^* , y_1^* , and y_2^* all being maximinimizers, and with part (3) of the maximinimizer theorem, we get that (x_1^*, y_2^*) and (x_2^*, y_1^*) are also Nash equilibria of G.

Preliminar and

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

FREIBU

Preliminaries and

Example

Solution Concepts and Notation

Dominated Strategies

Nash Equilibria

Zero-Sum Games

Summary

- Strategic games are one-shot games of finitely many players with given action sets and payoff functions. Players have perfect information.
- Solution concepts: survival of iterative elimination of strictly dominated strategies, Nash equilibria.
- Relation between solution concepts: Nash equilibria always survive iterative elimination of strictly dominated strategies.
- In zero-sum games, one player's gain is the other player's loss. Thus, playing it safe is rational. Relevant concept: maximinimizers.
- Relation to Nash equilibria: In zero-sum games, Nash equilibria are pairs of maximinimizers, and, if at least one Nash equilibrium exists, pairs of maximinimizers are also Nash equilibria.

Preliminarie: and

Solution Concepts

Dominated

Nash Fauilibria

Zero-Sum Games