## Introduction to Game Theory

B. Nebel, R. Mattmüller
T. Schulte, D. Speck

University of Freiburg

Summer semester 2019

## Exercise Sheet 6

Due: Thursday, June 6, 2019
Send your solution to schultet@informatik.uni-freiburg.de (PDF only) or submit a hardcopy before the lecture. The exercise sheets may and should be worked on and handed in in groups of three students. Please indicate all names on your solution.

Exercise 6.1 (Voting procedures, 4 points)
For the following preference relations, determine the winners according to the plurality vote, instant runoff voting, Borda count, and Coombs method ${ }^{1}$ (for simplicity, we assume that ties are broken in favor of the candidate with the lower index):

| 2 voters have the preference: | $a_{2} \succ a_{4} \succ a_{3} \succ a_{5} \succ a_{1}$ |
| ---: | :--- | :--- |
| 3 voters have the preference: | $a_{1} \succ a_{3} \succ a_{4} \succ a_{2} \succ a_{5}$ |
| 1 voter has the preference: | $a_{4} \succ a_{2} \succ a_{5} \succ a_{1} \succ a_{3}$ |
| 2 voters have the preference: | $a_{5} \succ a_{3} \succ a_{4} \succ a_{2} \succ a_{1}$ |

Exercise 6.2 (Social welfare functions: unanimity, $2+2$ points)
A social welfare function $F: L^{n} \rightarrow L$ satisfies

- total unanimity if for all $\prec \in L, F(\prec, \ldots, \prec)=\prec$.
- partial unanimity if for all $\prec_{1}, \prec_{2}, \ldots, \prec_{n} \in L, a, b \in A$,

$$
a \prec_{i} b \text { for all } i=1, \ldots, n \Longrightarrow a \prec b \text {, where } \prec:=F\left(\prec_{1}, \ldots, \prec_{n}\right) \text {. }
$$

(a) Proof that partial unanimity implies total unanimity.
(b) Proof by counter-example that total unanimity does not imply partial unanimity. Hint: specify a social welfare function $F$ that satisfies total unanimity but does not satisfy partial unanimity.

[^0]
[^0]:    1 https://en.wikipedia.org/wiki/Coombs\%27_method

