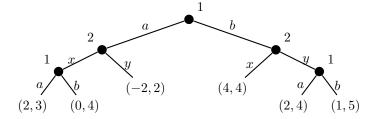
## Introduction to Game Theory

B. Nebel, R. MattmüllerT. Schulte, D. SpeckSummer semester 2019


University of Freiburg Department of Computer Science

## Exercise Sheet 5 Due: Thursday, May 30, 2019

Send your solution to schultet@informatik.uni-freiburg.de (PDF only) or submit a hardcopy before the lecture. The exercise sheets may and should be worked on and handed in in groups of three students. Please indicate all names on your solution.

**Exercise 5.1** (Subgame perfect equilibria, 2 points)

Determine all subgame perfect equilibria of the extensive form game defined by the following game tree.



**Exercise 5.2** (Uniqueness of SPE, 2 points)

Prove the following claim or give a counterexample: For any extensive two-player game  $\Gamma$  with  $s^*$  and  $r^*$  being subgame perfect equilibria of  $\Gamma$ , it holds that  $u_i(O(s^*)) = u_i(O(r^*))$ .

**Exercise 5.3** (Repeated Games, 2 + 2 points)

Consider the infinitely repeated prisoner's dilemma. The payoff matrix of the stage game is given below.

Player 2  

$$C$$
  $D$   
Player 1  $C$   $3,3$   $0,10$   
 $D$   $10,0$   $1,1$ 

(a) Under the discounting preference criterium, for which discount factor  $0<\delta<1$  is (GRIM, GRIM) a Nash equilibrium? Justify your answer.

(*Hint:* The GRIM strategy starts with playing C. After any play of D it plays D forever.)

(b) Consider the following three payoff profiles under the limit-of-means preference criterium: 1. (2, 2), 2. (10, 10), and 3. (3, 0). For each payoff profile, either construct two automata that form a Nash equilibrium or argue that no Nash equilibrium with the given payoffs exists.