Dynamic Epistemic Logic

B. Nebel, R. Mattmüller, T. Engesser

Summer Semester 2019

University of Freiburg

Department of Computer Science

Exercise Sheet 3
 Due: May 15th, 2019, 16:00

Exercise 3.1 (S5: Axioms and frame properties I, 6 points)
A Kripke frame $\mathcal{F}=\langle S, R\rangle$ is defined exactly like a Kripke model $\langle S, R, V\rangle$, but without the valuation V. The set of all models over $\langle S, R\rangle$ is the set of all models $\langle S, R, V\rangle$ where V is any propositional valuation. A formula is valid in a frame \mathcal{F}, if it is valid in all models over \mathcal{F}. It is valid in a class of frames, if it is valid in each frame in that class. We say that an axiom defines a class of frames if the axiom is valid exactly in this class of frames. Show that
(a) the axiom \mathbf{T} defines the class of reflexive frames,
(b) the axiom 4 defines the class of transitive frames,
(c) the axiom 5 defines the class of Euclidean frames.

Note: You might be able to re-use parts of your solutions for Exercise 2.3.
Exercise 3.2 (n-bisimulation, 4 points)
Let two models $\mathcal{M}=\langle S, R, V\rangle$ and $\mathcal{M}^{\prime}=\left\langle S^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ be given. For any natural number n, we define two states (\mathcal{M}, s) and $\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ to be n-bisimilar, writing $(\mathcal{M}, s) \leftrightarrows_{n}\left(\mathcal{M}^{\prime}, s^{\prime}\right)$, iff
(atoms) $s \in V(p)$ iff $s^{\prime} \in V^{\prime}(p)$ for all $p \in P$,
(forth) $n=0$ or (if $n>0$) for all $a \in A$ and $t \in S$ such that $(s, t) \in R_{a}$, there is also a $t^{\prime} \in S^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R^{\prime}$ and $(\mathcal{M}, t) \leftrightarrows_{n-1}\left(\mathcal{M}^{\prime}, t^{\prime}\right)$, and
(back) $n=0$ or (if $n>0$) for all $a \in A$ and $t^{\prime} \in S^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R_{a}^{\prime}$, there is also a $t \in S$ such that $(s, t) \in R$ and $(\mathcal{M}, t) \leftrightarrows_{n-1}\left(\mathcal{M}^{\prime}, t^{\prime}\right)$.

Furthermore, we define the modal depth of \mathcal{L}_{K}-formulas as

$$
\begin{aligned}
\operatorname{depth}(p) & =0 \text { if } p \text { is an atomic proposition } \\
\operatorname{depth}(\neg \phi) & =\operatorname{depth}(\phi) \\
\operatorname{depth}(\phi \wedge \psi) & =\max \{\operatorname{depth}(\phi), \operatorname{depth}(\psi)\} \\
\operatorname{depth}\left(K_{a} \phi\right) & =1+\operatorname{depth}(\phi)
\end{aligned}
$$

We say that the states (\mathcal{M}, s) and $\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ are epistemically equivalent up to depth $n \in \mathbb{N}$ and write $(\mathcal{M}, s) \equiv_{\mathcal{L}_{K}}^{n}\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ if and only if $\mathcal{M}, s \models \phi$ iff $\mathcal{M}^{\prime}, s^{\prime} \models \phi$ for all formulas $\phi \in \mathcal{L}_{K}$ with $\operatorname{depth}(\phi) \leq n$. Show that $(\mathcal{M}, s) \equiv_{\mathcal{L}_{K}}^{n}\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ if and only if $(\mathcal{M}, s) \leftrightarrows_{n}\left(\mathcal{M}^{\prime}, s^{\prime}\right)$.

Exercise 3.3 (S5: Deriving theorems, $1+1$ points)
Derive the following $\mathbf{S 5}$ theorems. Recall that a derivation is a finite sequence of formulas, such that each formula is either an instance of one of the axioms, an instance of a propositional tautology, or the result of the application of one of the rules (necessitation, modus ponens) on previous formulas.
(a) $K_{a}(p \rightarrow p)$
(b) $C_{B} p \leftrightarrow C_{B} C_{B} p$

