Dynamic Epistemic Logic

B. Nebel, R. Mattmüller, T. Engesser Summer Semester 2019 University of Freiburg Department of Computer Science

Exercise Sheet 3 Due: May 15th, 2019, 16:00

Exercise 3.1 (S5: Axioms and frame properties I, 6 points)

A Kripke frame $\mathcal{F} = \langle S, R \rangle$ is defined exactly like a Kripke model $\langle S, R, V \rangle$, but without the valuation V. The set of all models over $\langle S, R \rangle$ is the set of all models $\langle S, R, V \rangle$ where V is any propositional valuation. A formula is valid in a frame \mathcal{F} , if it is valid in all models over \mathcal{F} . It is valid in a class of frames, if it is valid in each frame in that class. We say that an axiom defines a class of frames if the axiom is valid exactly in this class of frames. Show that

- (a) the axiom \mathbf{T} defines the class of *reflexive* frames,
- (b) the axiom 4 defines the class of *transitive* frames,
- (c) the axiom **5** defines the class of *Euclidean* frames.

Note: You might be able to re-use parts of your solutions for Exercise 2.3.

Exercise 3.2 (*n*-bisimulation, 4 points)

Let two models $\mathcal{M} = \langle S, R, V \rangle$ and $\mathcal{M}' = \langle S', R', V' \rangle$ be given. For any natural number n, we define two states (\mathcal{M}, s) and (\mathcal{M}', s') to be n-bisimilar, writing $(\mathcal{M}, s) \rightleftharpoons_n (\mathcal{M}', s')$, iff

(atoms) $s \in V(p)$ iff $s' \in V'(p)$ for all $p \in P$,

- (forth) n = 0 or (if n > 0) for all $a \in A$ and $t \in S$ such that $(s, t) \in R_a$, there is also a $t' \in S'$ such that $(s', t') \in R'$ and $(\mathcal{M}, t) \cong_{n-1} (\mathcal{M}', t')$, and
- (back) n = 0 or (if n > 0) for all $a \in A$ and $t' \in S'$ such that $(s', t') \in R'_a$, there is also a $t \in S$ such that $(s, t) \in R$ and $(\mathcal{M}, t) \rightleftharpoons_{n-1} (\mathcal{M}', t')$.

Furthermore, we define the *modal depth* of \mathcal{L}_K -formulas as

$$depth(p) = 0 \text{ if } p \text{ is an atomic proposition}$$
$$depth(\neg \phi) = depth(\phi)$$
$$depth(\phi \land \psi) = \max\{depth(\phi), depth(\psi)\}$$
$$depth(K_a\phi) = 1 + depth(\phi).$$

We say that the states (\mathcal{M}, s) and (\mathcal{M}', s') are epistemically equivalent up to depth $n \in \mathbb{N}$ and write $(\mathcal{M}, s) \equiv_{\mathcal{L}_{K}}^{n} (\mathcal{M}', s')$ if and only if $\mathcal{M}, s \models \phi$ iff $\mathcal{M}', s' \models \phi$ for all formulas $\phi \in \mathcal{L}_{K}$ with $depth(\phi) \leq n$. Show that $(\mathcal{M}, s) \equiv_{\mathcal{L}_{K}}^{n} (\mathcal{M}', s')$ if and only if $(\mathcal{M}, s) \rightleftharpoons_{n} (\mathcal{M}', s')$.

Exercise 3.3 (S5: Deriving theorems, 1+1 points)

Derive the following **S5** theorems. Recall that a derivation is a finite sequence of formulas, such that each formula is either an instance of one of the axioms, an instance of a propositional tautology, or the result of the application of one of the rules (necessitation, modus ponens) on previous formulas.

(a)
$$K_a(p \to p)$$

(b) $C_B p \leftrightarrow C_B C_B p$