

Multi

Multipointed Models	BURG
Definition (closure under indistinguishability) Let $\mathcal{M} = (S, \sim, V)$ be an epistemic model, $S' \subseteq S$, and $a \in A$. Then S' is closed under indistinguishability of agent a if $s \in S'$ and $s \sim_a s'$ implies $s' \in S'$ for all $s, s' \in S$.	Prelude: Two Extensions Multpointed Models Ontic Effects Classical Planning
Definition (multipointed epistemic model) Let $\mathcal{M} = (S, \sim, V)$ be an epistemic model, and $\emptyset \neq S_d \subseteq S$. Then (\mathcal{M}, S_d) is a multipointed model. If $S_d = \{s\}$, then (\mathcal{M}, S_d) is a global state. If S_d is closed under indistinguishability for some agent $a \in A$, then (\mathcal{M}, S_d) is local for agent a . Given a global state $(\mathcal{M}, \{s\})$, the associated local state for agent a is the model $(\mathcal{M}, \{s\})^a = (\mathcal{M}, \{s' \in S \mid s' \sim_a s\})$. Similarly, $(\mathcal{M}, S_d)^a = (\mathcal{M}, S'_d)$, for $S'_d = \{s' \in S \mid s' \sim_a s \text{ for some } s \in S_d\}$).	Epistemic Planning Summary
June 19th, 2019 B. Nebel, R. Mattmüller – DEL 5 / 92	

Multipointed Models

Note: Definition of bisimulation has to be adapted to relate designated worlds in one model to designated worlds in the other model. (Homework.)

Definition (truth condition in multipointed models)

Given a formula φ (from any of the logics defined earlier) and a multipointed model ($\mathcal{M}, \mathcal{S}_d$), we define:

$$\mathcal{M}, \mathcal{S}_{\mathrm{d}} \models \varphi \quad ext{iff} \quad \mathcal{M}, \pmb{s} \models \varphi ext{ for all } \pmb{s} \in \mathcal{S}_{\mathrm{d}}.$$

Note: If (\mathcal{M}, S_d) is local for some agent *a*, then $\mathcal{M}, S_d \models K_a \varphi$ iff $\mathcal{M}, \mathcal{S}_{\mathrm{d}} \models \varphi$.

B. Nebel, R. Mattmüller - DEL

7/92

UNI FREIBURG

Prelude: Two

Extensions Multipointed

Models

Ontic Effects

Classical Planning

Epistemic Planning

Summary

Cula

An action model with ontic effects $M = (E, \sim, pre, eff)$ is an Multipointed action model (E, \sim, pre) together with a function *eff* : $E \to \mathcal{L}_{K}$, Ontic Effects where for all $e \in E$, *eff*(*e*) is a conjunction of atoms and negated atoms from P. Planning Example *eff*(*e*) = $p \land q \land \neg r \land \neg x$ means that event *e* makes *p* and *q* true and r and x false. Note: This corresponds to add and delete lists in STRIPS planning. 14/92 June 19th, 2019 B. Nebel, R. Mattmüller - DEL BURG **Ontic Effects FREI** In order to correctly reflect ontic effects in our semantics, we need to make the product update take them into account. Prelude: Two Multipointed Definition (Product update) Models Ontic Effects Let $\mathcal{M} = (S, \sim, V)$ be an epistemic state with designated worlds $S_d \subseteq S$, and let $M = (E, \sim, pre, eff)$ be an action model with designated events $E_d \subseteq E$. Then the product update Planning $(\mathcal{M}, S_d) \otimes (\mathcal{M}, E_d)$ is the epistemic state $\mathcal{M}' = (S', \sim', V')$ with with designated worlds $S'_d \subseteq S'$, where: $\blacksquare S' = \{(s, e) \in S \times E \mid \mathcal{M}, s \models pre(e)\},\$ (*s*,*e*) \sim_a^{\prime} (*t*, ε) iff $s \sim_a t$ and $e \sim_a \varepsilon$, for $a \in A$, (*s*, *e*) \in *V*^{\prime}_{*p*} iff (*s* \in *V*_{*p*} and *eff*(*e*) $\not\models \neg$ *p*) or *eff*(*e*) \models *p*, for all $p \in P$, and $\blacksquare (s,e) \in S'_d \text{ iff } s \in S_d \text{ and } e \in E_d.$ June 19th, 2019 B. Nebel, R. Mattmüller - DEL 16/92

Ontic Effects

Definition (action model with ontic effects)

BURG

FREI

Prelude: Two

15/92

B. Nebel, R. Mattmüller - DEL

Classic

Classical Planning	5	BURG	
Roadmap:		UN	
Review of classic epistemic aspects	al and nondeterministic plann	ing without	Prelude: Two Extensions
(this section)	-		Classical Planning
Extension toward (next section)	s <mark>epistemic</mark> planning		Epistemic Planning
			Summary
Note: Rest of this section based on slides of AI Planning course, WS 2018/2019, chapters 1, 2, and 14			
(http://gki.inform ws1819/aip/aip01.p	atik.uni-freiburg.de/tea	aching/	
http://gki.informatik.uni-freiburg.de/teaching/			
ws1819/aip/aip02.pdf,			
http://gki.informatik.uni-freiburg.de/teaching/			
ws1819/aip/aip14.pdf). Extended slides can be found			
there.			
June 19th, 2019	B. Nebel, R. Mattmüller – DEL	21 / 92	

What is planni	ing?		
Planning "Planning is the ar intelligent dec general-purp algorithms for representatio	rt and practice of thinking be cision making: What actions ose problem representation r solving any problem expres	fore acting." — Patrik Haslum to take? ssible in the	Prelude: Two Extensions Classical Planning Epistemic Planning Summary
June 19th, 2019	B. Nebel, R. Mattmüller – DEL	22 / 92	

Definition (successor state)

The successor state $app_o(s)$ of *s* with respect to operator o = (pre, eff) is the state *s'* with $s' \models [eff]_s$ and s'(p) = s(p) for all state variables *p* not mentioned in $[eff]_s$. This is defined only if *o* is applicable in *s*.

B. Nebel, R. Mattmüller – DEL

Prelude: Two

Classical Planning

Planning

Planni	ng	BURG	
		UN	
By <mark>plan</mark> r	ing, we mean the following two algorithmic proble	ms:	relude: Two ktensions
Definitio	on (satisficing planning)	C	lassical anning
Given:	a planning task П	E	oistemic anning
Output:	a plan for Π , or unsolvable if no plan for Π exists	s s	ummary
Definition (optimal planning)			
Given: Output:	a planning task П a plan for П with minimal length among all plans for П, or unsolvable if no plan for П exists		
June 19th, 2019	B. Nebel, R. Mattmüller – DEL	36 / 92	

Definition (nondeterministic operator application)

Let o = (pre, Eff) be a nondeterministic operator and *s* a state.

Applicability of *o* in *s* is definied as in the deterministic case, i.e., *o* is applicable in *s* iff $s \models pre$ and the change set of each effect $eff \in Eff$ is consistent.

If *o* is applicable in *s*, then the application of *o* in *s* leads to one of the states in the set $app_o(s) := \{app_{(pre,eff)}(s) | eff \in Eff\}$ nondeterministically.

Prelude: Two

Classical Planning

Planning

Summary

Nondeterministic planning tasks and transition systems

Nondeterministic planning task: Like a deterministic planning task, but now possibly with nondeterministic actions.

Induced transition system: Like before, but now possibly with nondeterministic transitions.

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

41 / 92

UNI FREIBURG

Prelude: Tw

Extensions

Classical

Planning

Planning

Definition (strategy)

Let $\Pi = (P, I, Act, \gamma)$ be a nondeterministic planning task with state set *S* and goal states S_{\star} .

A strategy for Π is a function $\pi : S_{\pi} \to \text{Act}$ for some subset $S_{\pi} \subseteq S$ such that for all states $s \in S_{\pi}$ the action $\pi(s)$ is applicable in s.

The set of states reachable in $\mathcal{T}(\Pi)$ starting in state *s* and following π is denoted by $S_{\pi}(s)$.

Nondeterministic plans: formal definition

Prelude: Two

Classical

Planning

Planning

Definition (weak, closed, proper, and acyclic strategies)

Let $\Pi = (P, I, Act, \gamma)$ be a nondeterministic planning task with state set *S* and goal states S_* , and let π be a strategy for Π . Then π is called

proper iff $S_{\pi}(s') \cap S_{\star} \neq \emptyset$ for all $s' \in S_{\pi}(s_0)$, and

■ acyclic iff there is no state $s' \in S_{\pi}(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps.

Definition

Let $\Pi = (P, I, Act, \gamma)$ be a nondeterministic planning task with state set *S* and goal states S_{\star} .

A strategy for Π is called a strong plan if it is proper and acyclic.

B. Nebel, R. Mattmüller – DEL

Epistemic Planning

Prelude: Tw

Extensions

Planning

Epistemic

Planning

Good and relatively recent overview of the state of the art in epistemic planning:

Baral et al., Epistemic Planning (Dagstuhl Seminar 17231), Dagstuhl Reports, Vol. 7, Issue 6 (2017), http:

//drops.dagstuhl.de/opus/volltexte/2017/8285/

Intro to DEL-based epistemic planning:

Bolander, A Gentle Introduction to Epistemic Planning: The DEL Approach (2017), https://arxiv.org/abs/1703.02192

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

53 / 92

Cooperative Epistemic Planning Tasks

From now on: Multi-pointed models, ontic effects. Fix a finite set of agents *A*.

Definition

A cooperative epistemic planning task $\Pi = (P, I, Act, \gamma, \omega)$ consists of

- a finite set of state variables (atomic propositions) *P*,
- an initial global epistemic state $I = (\mathcal{M}_0, s_0)$ over P,
- a finite set Act of epistemic actions over *P*,
- **a goal formula** $\gamma \in \mathcal{L}_{KC}$ over *P*, and
- an owner function ω : Act \rightarrow *A*, such that each action $\alpha \in$ Act is local for $\omega(\alpha)$.

Assumption: Act is common knowledge among all agents.

lune 19th. 2019	B. Nebel.
uno 1001, 2010	D. NODOI,

, R. Mattmüller – DEL

54 / 92

Prelude: Two

Planning

Enistemic

Planning

Summary

Centralized Sequential Plans

57/92

Prelude: Tw Extensions

Planning

Epistemic

Planning

For convenience, we add a new modality as an abbreviation to $\mathcal{L}_{\textit{KC[I]}}$:

Definition

Modality ((α)) is defined such that, for all formulas $\varphi \in \mathcal{L}_{\mathcal{KC}[]}$, we have

$$\boldsymbol{\alpha})\boldsymbol{\varphi} \equiv \langle \boldsymbol{\alpha} \rangle \top \wedge [\boldsymbol{\alpha}] \boldsymbol{\varphi}$$

Truth condition:

```
\mathcal{M}, s \models (\alpha) \varphi iff \alpha is applicable in \mathcal{M}, s and (\mathcal{M}, s) \otimes \alpha \models \varphi
```

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

Let $M = (E, \sim, pre, eff)$, $E_d \subseteq E$, and assume that (M, E_d) is local to some agent $a \in A$. Let $e_1, e_2 \in E_d$. Then e_1 and e_2 are called runtime indistinguishable for agent a if $e_1 \sim_a e_2$. Otherwise (if $e_1 \not\sim_a e_2$), they are runtime distinguishable for a, but plantime indistinguishable for a.

Above, we defined plantime and runtime indistinguishability of events. Plantime and runtime indistinguishability of worlds in epistemic states can be defined similarly.

June 19th, 2019

59 / 92

June 19th, 2019

60 / 92

Planning

Enistemic

Planning

Indistinguishability of Action Models

This can lead to problematic situations: Assume that the only way to achieve the goal is (1) agent *a* performs action α_p , followed by (2) agent *b* performing action α_γ . Now, if agent *b* cannot distinguish between agent *a* performing action α_p , and agent *a* performing a different, useless action α_q , then even after agent *a* has performed the good action α_p , agent *b* does not know that his action α_γ is applicable and leads to the goal! Plantime vs. Runtime IndistinguishabilityConstructionDescriptionConstructionStatusConstructionCased al (After, S_d) = (Before, {s_1, s_2}) \otimes (Read_a, {e_1, e_2}):Cased al (Anton)C(s_1, e_1) : DC(s_2, e_2) : ¬pWorlds (s_1, e_1) and (s_2, e_2) plantime indistinguishable, but runtime distinguishable to agent a.Status

UNI FREIBURG

Prelude: Tw

Extensions

Planning

Epistemic

Planning

Indistinguishability of Action Models

Extensions

Planning

Epistemic

Planning

If $\alpha_q \notin Act$, agent *b* could use this knowledge to infer that the action applied by agent *a* must have been action α_p , and hence infer that *p* holds in $I \otimes \alpha_p$.

To avoid a "side-channel attack" of agent *b*, we define:

Definition

An action set Act is closed if, for all $(M, E_d) \in Act$ and $e \in E$ (of *M*), there is an $E'_d \subseteq E$ with $e \in E'_d$ and $(M, E'_d) \in Act$.

In the example, we had $(M, E_d) = \alpha_p$, $e = e_q$, and $(M, E'_d) = \alpha_q$.

From now on, we assume that all action sets Act are closed.

Indistinguishability of Action Models

Prelude: Two

Planning

Enistemic

Planning

Example (ctd.)

This is the case although, in $I \otimes \alpha_p$, agent $b = \omega(\alpha_\gamma)$ does not event know that α_γ is applicable.

- Is this reasonable?
- Agents can always observe that an action occurs. But not necessarily which action!
- Problem here arises because agent *b* can mistake action α_p for α_q . This, however, can only happen if $\alpha_p, \alpha_q \in Act$.

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

B. Nebel, R. Mattmüller - DEL

June 19th, 2019

Implicitly Coordinated Sequential Plans

Implicitly Coordinated Sequential Plans

Prelude: Two

Classical

Planning

Enistemic

Planning

Proposition

Let $\Pi = (P, I, Act, \gamma, \omega)$ be a planning task and $\pi = \alpha_1, \ldots, \alpha_n$ a sequence of actions from Act. Then π is an implicitly coordinated sequential epistemic plan for Π if and only if $I \models K_{\omega(\alpha_1)}((\alpha_1))K_{\omega(\alpha_2)}((\alpha_2))\dots K_{\omega(\alpha_n)}((\alpha_n))\gamma.$

Proof

Induction on plan length n.

Base case (n = 0): Then π is an implicitly coordinated sequential epistemic plan iff $I \models \gamma$.

Inductive case (n > 0): [...]

June 19th, 2019

B. Nebel, R. Mattmüller - DEL

Implicitly Coordinated Sequential Plans

BURG **TREI**

Prelude: Two

Extensions

Classical Planning

Epistemic

Planning

Summary

There is no ICSEP for this planning task. Reason: if there were one, it would have to start with α_1 (nothing else is applicable).

Then, $I^{\omega(\alpha_1)} \otimes \alpha_1 =$

 $(s_0, e_{11}): \neg p, q, \neg r, \neg t \stackrel{a}{=} (s_0, e_{12}): \neg p, \neg q, r, \neg t =: (\mathcal{M}^1, S^1_d).$

77 / 92

In (\mathcal{M}^1, S^1_d) , none of the available actions is applicable, and it is not a goal state.

This task would be solvable with a branching or conditional plan: start with α_1 , and depending on the outcome, continue with α_2 or α_3 . This would even be implicitly coordinated in the sense that at each point in the plan, the agent to move knows that it can move and that this leads to progress.

June 19th, 2019

B. Nebel, R. Mattmüller - DEL

Branching Plans

81/92

Planning

Epistemic Planning

Example

Assume propositions p and q and worlds s_1, s_2, s_3 such that $V_p = \{s_1, s_2\}$ and $V_q = \{s_2, s_3\}$.

Assume actions α_1 with single event $e_1 : (p, \gamma)$ and owner $\omega(\alpha_1) = a$, and α_2 with single event $e_2 : (q, \gamma)$ and owner $\omega(\alpha_2) = b$.

I. e., α_1 is applicable in s_1 and s_2 , and α_2 is applicable in s_2 and s_3 .

Further, assume that we want to find a plan for the multi-pointed model at the top of the following figure. [...]

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

Example (ctd.)

We have to assign $\{\alpha_1, \alpha_2\}$ to s_2 . Both α_1 or α_2 alone would achieve the goal.

Epistemic Planning Summary

Prelude: Tw

Extensions

Planning

BURG

But since agent *a* cannot distinguish between s_1 and s_2 , also her policy should not be able to distinguish between s_1 and s_2 . Since her policy prescribes α_1 in s_1 , it should also prescribe α_1

in s_2 (uniformity!).

Similarly, since agent *b* cannot distinguish between s_2 and s_3 , also his policy should not be able to distinguish between s_2 and s_3 . Since his policy prescribes α_2 in s_3 , it should also prescribe α_2 in s_2 (uniformity!).

AND-OR Search

- AND: Solve an arbitrary state (\mathcal{M}, S_d) by solving all global states (\mathcal{M}, s) with $s \in S_d$.
- OR: Solve a global state (\mathcal{M}, s) by finding an agent *a* and an action α with $\omega(\alpha) = a$, and solving $(\mathcal{M}, s)^a \otimes \alpha$.

B. Nebel, R. Mattmüller - DEL

83 / 92

Finiteness: π is finite.

- Foundedness: for all $s \in \text{Globals}(I)$, $s \models \gamma$ or $\pi(s) \neq \emptyset$.
- Closedness: for all $(s, Act') \in \pi$, $\alpha \in Act'$, $s' \in \sigma(s, \alpha)$, we have $s' \models \gamma$ or $\pi(s') \neq \emptyset$.

B. Nebel, R. Mattmüller – DEL

Branching Plans

Note: No need to explicitly require acyclicity, since transition system is already acyclic (as long as we do not view bisimilar states as identical).

Epistemic Planning Summary

Prelude: Two

Extensions

Classical

Planning

Definition (Centralized and implicitly coordinated branching epistemic plans)

A strong plan with respect to σ_{cen} is called a centralized branching epistemic plan, and a strong plan with respect to σ_{ps} is called an implicitly coordinated branching epistemic plan.

June 19th, 2019

B. Nebel, R. Mattmüller – DEL

89 / 92

Branching Plans

Prelude: Two

Planning

Epistemic

Planning

Proposition

Let π be an implicitly coordinated branching epistemic plan for a planning task $\Pi = (P, I, Act, \gamma, \omega)$ and let s be a non-goal successor state of I by following π . Then there is an agent $a \in A$ such that $\pi(s)$ contains at least one of agent a's actions and π is an implicitly coordinated branching epistemic plan for $\Pi' = (P, s^a, Act, \gamma, \omega)$.

Example

The policy represented by the plan tree above is an implicitly coordinated branching epistemic plan.

June 19th, 2019

B. Nebel, R. Mattmüller - DEL

