

			$\begin{aligned} & \cup \\ & \hline \\ & \hline \end{aligned}$
Introduction			華
			Introduction
			Action models
			Syntax of Action Mode Logic
			Semantics of Action Model Logic
			Bisimilarity and Action Emulation
			Validities and Axiomatisation
			Summary

Action Models

Question: How to get from Before to After?
Answer: Action models.
Remark: After, $s_{1}^{\prime}=$
$K_{a} p \wedge\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right) \wedge K_{b}\left(K_{a} p \vee K_{a} \neg p\right) \wedge K_{a}\left(\neg K_{b} p \wedge \neg K_{b} \neg p\right)$
\rightsquigarrow action model needs to achieve exactly that!
Action model Read:

With this action model, After $=$ Before \otimes Read, for an appropriate definition of \otimes.

Action models		는문	
			Introduction
			Action models
			Syntax of Action Model Logic
			Semantics of Action Mode Logic
			Bisimilarity and Action Emulation
			Validities and Axiomatisation
			Summary
May 27th, 2019	B. Nebel, R. Mattmüller - DEL	7/69	

Action Models

Definition (Language $\mathcal{L}_{K C \otimes}$)
Let P be a countable set of atomic propositions and A a finite set of agent symbols. Then the language $\mathcal{L}_{K C \otimes}$ of action model logic is the union of the formulas $\varphi \in \mathcal{L}_{K C \otimes}^{\text {stat }}$ and the actions $\alpha \in \mathcal{L}_{K C \otimes}^{\text {act }}$ defined by the following BNF:

$$
\begin{aligned}
& \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right| C_{B} \varphi \mid[\alpha] \varphi \\
& \alpha::=(M, e) \mid \alpha \cup \alpha
\end{aligned}
$$

where $p \in P, a \in A, B \subseteq A$, and (M, e) is a pointed action model with a finite domain E, and
\square for all events $e^{\prime} \in E$, the precondition pre $\left(e^{\prime}\right)$ is a $\mathcal{L}_{K C \otimes}^{\text {stat }}$
formula that has already been constructed in a previous step of the induction.

Action Models		
	$2 \underline{2}$	
		Introduction
Intuition		Action models
$[\alpha] \varphi$: After (every) application of action α, φ is true.		Syntax of Action Model Logic
Abbreviations:		Semantics of Action Model Logic
$\langle\alpha\rangle \varphi:=\neg[\alpha] \neg \varphi$ After (some) application of action α, φ is true.		Bisimilarity and Action Emulation
$\square M:=\bigcup_{e \in E}(M, e)$		Validities and Axiomatisation
		Summary
May 27th, 2019 B. Nebel, R. Mattmüller - DEL	11/69	

Action Models

Example (Action model Read, formally)
Action Models

Read is the action model ($\left.\left\{e_{1}, e_{2}\right\}, \sim, p r e\right)$ with

$$
\begin{aligned}
\sim_{a} & =\left\{\left(e_{1}, e_{1}\right),\left(e_{2}, e_{2}\right)\right\} \\
\sim_{b} & =\left\{\left(e_{1}, e_{1}\right),\left(e_{1}, e_{2}\right),\left(e_{2}, e_{1}\right),\left(e_{2}, e_{2}\right)\right\}
\end{aligned}
$$

\qquad
Fix agents A and atomic propositions P.

$$
\operatorname{pre}\left(e_{1}\right)=p
$$

$$
\operatorname{pre}\left(e_{2}\right)=\neg p .
$$

Example (Skip)

Action skip (or $\mathbf{1}$) is the pointed action model ((\{e\}, $\sim, p r e), e)$ with pre $(e)=\top$ and $\sim_{a}=\{(e, e)\}$ for all $a \in A$.

Example (Crash)
Action crash (or $\mathbf{0}$) is the pointed action model ((\{e\}, $\sim, p r e), e)$ with pre $(e)=\perp$ and $\sim_{a}=\{(e, e)\}$ for all $a \in A$.
Remark: Public announcements are a special case of action models.

Example (Public announcements)
Action model for the public announcement of φ :

Action Models

Example (Composition)

Action model $\left(\operatorname{Read}_{a}, e_{1}\right)=\left(\operatorname{Read}, e_{1}\right):$

Action model $\left(\operatorname{Read}_{b}, e_{1}^{\prime}\right)$:

[...]

$$
\begin{array}{ll}
\varphi_{11}=\left\langle\operatorname{Read}_{a}, e_{1}\right\rangle p \equiv p & \varphi_{12}=\left\langle\operatorname{Read}_{a}, e_{1}\right\rangle \neg p \equiv \perp \\
\varphi_{21}=\left\langle\operatorname{Read}_{a}, e_{2}\right\rangle p \equiv \perp & \varphi_{22}=\left\langle\operatorname{Read}_{a}, e_{2}\right\rangle \neg p \equiv \neg p
\end{array}
$$

Action Models

Example (Composition, ctd.)

Remark: With $\varphi_{12} \equiv \varphi_{21} \equiv \perp$, events $\left(e_{1}, e_{2}^{\prime}\right)$ and $\left(e_{1}^{\prime}, e_{2}\right)$ can be eliminated as globally inapplicable.
This leaves us with $\left(\operatorname{Read}_{a}, e_{1}\right) ;\left(\operatorname{Read}_{b}, e_{1}^{\prime}\right)$ equivalent to:

$$
\left(e_{1}, e_{1}^{\prime}\right): p \quad\left(e_{2}, e_{2}^{\prime}\right): \neg p
$$

Further eliminating unreachable events, we get:

$$
\left(e_{1}, e_{1}^{\prime}\right): p
$$

In other words, if both a and b read the message that p is true, and they are aware of each other reading the message, the
two actions combined must produce common knowledge of p.
May 27th, 2019
B. Nebel, R. Mattmüller - DEL
18/69

May 27th, 2019

Action Models	ソ
Remark: This is very similar to the semantics of $[\varphi] \psi$ and $\langle\varphi\rangle \psi$ in public announcement logic.	Introductio
	Action models mole
For completeness, dual $\langle\alpha\rangle$, for general α :	Syntax of Action Model Logic
$\mathcal{M}, s \equiv\langle\alpha\rangle \varphi \quad$ iff $\mathcal{M}, s \not \vDash[\alpha] \neg \varphi \quad$ iff not f. a. $\left(\mathcal{M}^{\prime}, s^{\prime}\right):(\mathcal{M}, s) \llbracket \alpha \rrbracket\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ implies $\left(\mathcal{M}^{\prime}, s^{\prime}\right) \vDash \neg \varphi \quad$ iff there ex. $\left(\mathcal{M}^{\prime}, s^{\prime}\right):(\mathcal{M}, s) \llbracket \alpha \rrbracket\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ and $\left(\mathcal{M}^{\prime}, s^{\prime}\right) \not \vDash \neg \varphi \quad$ iff there ex. $\left(\mathcal{M}^{\prime}, s^{\prime}\right):(\mathcal{M}, s) \llbracket \alpha \rrbracket\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ and $\left(\mathcal{M}^{\prime}, s^{\prime}\right) \vDash \varphi$	Semantics of Action Model Logic
	Bisimilarity and Action Emulation
	Validities and Axiomatisation Summary

Action Models

Remarks:
\square For $\alpha=(M, e), \llbracket \alpha \rrbracket$ is functional, i. e., for each (\mathcal{M}, s), there is at most one $\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ with $(\mathcal{M}, s) \llbracket(M, e) \rrbracket\left(\mathcal{M}^{\prime}, s^{\prime}\right)$.
\square For $\alpha=\alpha_{1} \cup \alpha_{2}$, this is no longer necessarily the case. Careful with duality between $[\alpha]$ and $\langle\alpha\rangle$, then.
Special case $\alpha=(M, e)$: Then $\mathcal{M}, s \vDash[\alpha] \varphi$ iff $\mathcal{M}, s \vDash$ pre(e) implies $(\mathcal{M} \otimes M,(s, e))=\varphi$.
Dual $\langle\alpha\rangle$, for $\alpha=(M, e)$:
$\mathcal{M}, s \equiv\langle\alpha\rangle \varphi \quad$ iff
$\mathcal{M}, s \not \vDash[\alpha] \neg \varphi \quad$ iff
$\mathcal{M}, s \equiv \operatorname{pre}(e)$ does not imply $(\mathcal{M} \otimes M,(s, e)) \vDash \neg \varphi \quad$ iff
$\mathcal{M}, s \neq \operatorname{pre}(e)$ and $(\mathcal{M} \otimes M,(s, e)) \not \vDash \neg \varphi$ iff
$\mathcal{M}, s \equiv \operatorname{pre}(e)$ and $(\mathcal{M} \otimes M,(s, e)) \models \varphi$
May 27th, 2019
B. Nebel, R. Mattmüller - DEL

22 / 69

Bisimilarity and Action Emulation	-
	Seman
	Mod
	summ
Meye 2 rtr 20019	12/69

Bisimilarity and Action Emulation

Example

- Can two action models be bisimilar? \rightsquigarrow Yes.
- Does the application of bisimilar action models to bisimilar epistemic states lead to bisimilar successor states? \rightsquigarrow Yes.
- Do we even need bisimilarity of actions models for that? \rightsquigarrow No.
- Weaker notion of emulation is enough.
M_{1} and M_{2} are not bisimilar, but always behave in the same way \rightsquigarrow similar enough.

$$
M_{1}=e_{\top}: \top \quad M_{2}=e_{p}: p a_{1}, a_{2}, \ldots, a_{n} e_{\neg p}: \neg p
$$

Before looking at bisimulations and emulations between action models, let us quickly see that applying the same action to two bisimilar epistemic states always results in bisimilar successor states.

Bisimilarity and Action Emulation

Proposition (Preservation of bisimilarity)
Let (\mathcal{M}, s) and $\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ be two epistemic states with $(\mathcal{M}, s) \leftrightarrows\left(\mathcal{M}^{\prime}, s^{\prime}\right)$. Let (M, e) with $M=(E, \sim$, pre $)$ be applicable in (\mathcal{M}, s). Then $(\mathcal{M} \otimes M,(s, e)) \leftrightarrows\left(\mathcal{M}^{\prime} \otimes M,\left(s^{\prime}, e\right)\right)$.

Proof.

(M, e) is also applicable in $\left(\mathcal{M}^{\prime}, s^{\prime}\right)$, since $\mathcal{M}, s \vDash$ pre(e) and
$(\mathcal{M}, s) \leftrightarrow\left(\mathcal{M}^{\prime}, s^{\prime}\right)$ implies $\left(\mathcal{M}^{\prime}, s^{\prime}\right)=$ pre(e). Let
$\mathcal{B}:(\mathcal{M}, s) \leftrightarrows\left(\mathcal{M}^{\prime}, s^{\prime}\right)$.
Then the bisimulation $\mathcal{B}^{\prime}:(\mathcal{M} \otimes M,(s, e)) \leftrightarrows\left(\mathcal{M}^{\prime} \otimes M,\left(s^{\prime}, e\right)\right)$
between the successor states can be defined as
$\mathcal{B}^{\prime}\left((t, \varepsilon),\left(t^{\prime}, \varepsilon^{\prime}\right)\right)$ iff $\mathcal{B}\left(t, t^{\prime}\right)$ and $\varepsilon=\varepsilon^{\prime}$ for all (t, ε) and $\left(t^{\prime}, \varepsilon^{\prime}\right)$.

Bisimilarity and Action Emulation

Definition (Bisimulation of actions)

Let two pointed action models (M, ℓ) with $M=(E, \sim, p r e)$ and ($M^{\prime}, \ell^{\prime}$) with $M^{\prime}=\left(E^{\prime}, \sim^{\prime}\right.$, pre $)$ be given. A non-empty relation $\mathcal{B} \subseteq E \times E^{\prime}$ is a bisimulation between (M, ℓ) and $\left(M^{\prime}, \ell^{\prime}\right)$ iff $\mathcal{B}\left(\ell, \ell^{\prime}\right)$, and for all $e \in E$ and $e^{\prime} \in E^{\prime}$ with $\mathcal{B}\left(e, e^{\prime}\right)$, the following holds:

- (forth) for all agents $a \in A$ and $\varepsilon \in E$, if $e \sim_{a} \varepsilon$, then there is an $\varepsilon^{\prime} \in E^{\prime}$ such that $e^{\prime} \sim_{a}^{\prime} \varepsilon^{\prime}$ and $\mathcal{B}\left(\varepsilon, \varepsilon^{\prime}\right)$,
- (back) for all agents $a \in A$ and $\varepsilon^{\prime} \in E^{\prime}$, if $e^{\prime} \sim_{a}^{\prime} \varepsilon^{\prime}$, then there is an $\varepsilon \in E$ such that $e \sim_{a} \varepsilon$ and $\mathcal{B}\left(\varepsilon, \varepsilon^{\prime}\right)$, and
- (pre) pre(e) and $\operatorname{pre}^{\prime}\left(e^{\prime}\right)$ are logically equivalent.

Bisimilarity and Action Emulation

Forth condition, visualized

Definition (Bisimulation of actions, ctd.)

\mathcal{B} is a total bisimulation if for each $e \in E$, there is an $e^{\prime} \in E^{\prime}$ such that \mathcal{B} is a bisimulation between (M, e) and $\left(M^{\prime}, e^{\prime}\right)$ and vice versa.

We write $(M, e) \leftrightarrows\left(M^{\prime}, e^{\prime}\right)$ iff there is a bisimulation between M and M^{\prime} linking e and e^{\prime}, and we then say that (M, e) and (M^{\prime}, e^{\prime}) are bisimilar.

Bisimilarity and Action Emulation

Now, can we prove that bisimilar action models are always interchangeable? Yes!

Proposition
Given two action models $(M, e) \leftrightarrows\left(M^{\prime}, e^{\prime}\right)$ and an epistemic state (\mathcal{M}, s) such that (M, e) is applicable in (\mathcal{M}, s). Then $(\mathcal{M} \otimes M,(s, e)) \leftrightarrows\left(\mathcal{M} \otimes M^{\prime},\left(s, e^{\prime}\right)\right)$.

Proof.
Let $\mathcal{B}:(M, e) \leftrightarrows\left(M^{\prime}, e^{\prime}\right)$. Then $=\operatorname{pre}^{\prime}\left(e^{\prime}\right) \leftrightarrow p r e(e)$, because $\mathcal{B}\left(e, e^{\prime}\right)$. Since (M, e) is applicable in (\mathcal{M}, s), we have Introduction
Action
models
Syntax of
Action Model
Logic
Semantics of
Action Model
Logic
Bisimilarity
and Action
Emulation
Validitites and
Axiomatisati-
on
Summary
Sum $\mathcal{M}, s=\operatorname{pre}(e)$. Hence, also $\mathcal{M}, s=\operatorname{pre}^{\prime}\left(e^{\prime}\right)$, i. e., $\left(M^{\prime}, e^{\prime}\right)$ is also applicable in (\mathcal{M}, s). [...]

Bisimilarity and Action Emulation

Introduction

Example

Recall our earlier example. M_{1} and M_{2} are not bisimilar, but always behave in the same way \rightsquigarrow similar enough.

$$
M_{1}=e_{\top}: \top
$$

$$
M_{2}=e_{p}: p a_{1}, a_{2}, \ldots, a_{n} e_{\neg p}: \neg p
$$

Question: How to formalize "similar enough"?
Answer: Action emulation!

Bisimilarity and Action Emulation

Definition (Action emulation)
Let two pointed action models (M, ℓ) with $M=(E, \sim, p r e)$ and ($M^{\prime}, \ell^{\prime}$) with $M^{\prime}=\left(E^{\prime}, \sim^{\prime}, p r e^{\prime}\right)$ be given. An emulation between (M, ℓ) and $\left(M^{\prime}, \ell^{\prime}\right)$ is a relation $\mathcal{E} \subseteq E \times E^{\prime}$ such that $\mathcal{E}\left(\ell, \ell^{\prime}\right)$, and for all $a \in A$, all $e, \varepsilon \in E$ and all $e^{\prime}, \varepsilon^{\prime} \in E^{\prime}$, the following holds:

- (forth) if $\mathcal{E}\left(e, e^{\prime}\right)$ and $e \sim_{a} \varepsilon$, then there are $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime} \in E^{\prime}$ such that for all $i=1, \ldots, n, \mathcal{E}\left(\varepsilon, \varepsilon_{i}^{\prime}\right)$ and $e^{\prime} \sim_{a}^{\prime} \varepsilon_{i}^{\prime}$, and $\operatorname{pre}(\varepsilon) \vDash \operatorname{pre}^{\prime}\left(\varepsilon_{1}^{\prime}\right) \vee \cdots \vee \operatorname{pre}^{\prime}\left(\varepsilon_{n}^{\prime}\right)$.
- (back) if $\mathcal{E}\left(e, e^{\prime}\right)$ and $e^{\prime} \sim_{a}^{\prime} \varepsilon^{\prime}$, then there are $\varepsilon_{1}, \ldots, \varepsilon_{n} \in E$ such that for all $i=1, \ldots, n, \mathcal{E}\left(\varepsilon_{i}, \varepsilon^{\prime}\right)$ and $e \sim_{a} \varepsilon_{i}$, and $\operatorname{pre}^{\prime}\left(\varepsilon^{\prime}\right) \mid=\operatorname{pre}\left(\varepsilon_{1}\right) \vee \cdots \vee \operatorname{pre}\left(\varepsilon_{n}\right)$.
- (pre) if $\mathcal{E}\left(e, e^{\prime}\right)$, then pre(e) $\wedge \operatorname{pre}^{\prime}\left(e^{\prime}\right)$ is consistent (unless pre(e) or $\operatorname{pre}^{\prime}\left(e^{\prime}\right)$ is already inconsistent).

May 27th, 2019
B. Nebel, R. Mattmüller - DEL

Bisimilarity and Action Emulation

Example (Action emulation, ctd.)

- Back: Exemplarily for $\mathcal{E}\left(e_{\top}, e_{p}\right)\left(\mathcal{E}\left(e_{\top}, e_{\neg p}\right)\right.$ similar): we have $e_{p} \sim_{a}^{\prime} e_{p}$ and $e_{p} \sim_{a}^{\prime} e_{\neg p}$ for all agents a. Exemplarily for $e_{p} \sim_{a}^{\prime} e_{p}$ (again, $e_{p} \sim_{a}^{\prime} e_{\neg p}$ similar). Need to find

Introduction

$$
i=1, \ldots, n, \text { and } \operatorname{pre}^{\prime}\left(e_{p}\right)=\operatorname{pre}\left(\varepsilon_{1}\right) \vee \cdots \vee \operatorname{pre}\left(\varepsilon_{n}\right) . \text { Choose }
$$

$$
\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}=\left\{e_{\top}\right\} . \text { Then } \operatorname{pre}^{\prime}\left(e_{p}\right)=p=\top=\operatorname{pre}\left(e_{\top}\right) .
$$

May 27th, 2019
B. Nebel, R. Mattmüller - DEL

46 / 69

Bisimilarity and Action Emulation

Example (Action emulation, Ex. 2)

\square For $\left(e_{\top}, e_{p}\right): \operatorname{pre}\left(e_{\top}\right) \wedge \operatorname{pre}^{\prime}\left(e_{p}\right)=\top \wedge p \equiv p$ is consistent.

- For $\left(e_{\top}, e_{\neg p}\right)$: pre $\left(e_{\top}\right) \wedge p r e^{\prime}\left(e_{\neg p}\right)=\top \wedge \neg p \equiv \neg p$ is consistent.

Bisimilarity and Action Emulation

Proposition (Bisimulations are emulations)
A bisimulation $\mathcal{B}:(M, e) \leftrightarrows\left(M^{\prime}, e^{\prime}\right)$ is also an emulation.

Proof.
Easy. Homework.

Validities and Axiomatisation
Validities and Axiomatisation

But: $[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$ is valid.
\rightsquigarrow get rid of nondeterminism.
\rightsquigarrow assume no nondeterminism for the rest of this section.
\rightsquigarrow justification for formulating all principles of action model logic in terms of action models only (no nondeterministic choice).
 knows p, but after the outcome where she does not read the

Validities and Axiomatisation

This provides intuition for the following proposition:
Proposition (action and knowledge)
$[M, e] K_{a} \varphi \leftrightarrow\left(\right.$ pre $\left.(e) \rightarrow \bigwedge_{e \sim{ }_{a}} \varepsilon K_{a}[M, \varepsilon] \varphi\right)$ is valid.
Proof.
We prove the dual: $\langle M, e\rangle \hat{K}_{a} \varphi \leftrightarrow\left(\right.$ pre $\left.(e) \wedge \bigvee_{e \sim \sim_{a} \varepsilon} \hat{K}_{a}\langle M, \varepsilon\rangle \varphi\right)$ is valid. Let $\mathcal{M}=(S, \sim, V)$ and $M=(E, \sim, p r e)$.

- (\Rightarrow Assume that $\mathcal{M}, s \vDash\langle M, e\rangle \hat{K}_{a} \varphi$. Then $\mathcal{M}, s \vDash \operatorname{pre}(e)$ and $\mathcal{M} \otimes M,(s, e) \vDash \hat{K}_{a} \varphi$. Then there is a $(t, \varepsilon) \in S \times E$ such that $(s, e) \sim_{a}(t, \varepsilon)$ and $\mathcal{M} \otimes M,(t, \varepsilon) \vDash \varphi$. Thus, $s \sim_{a} t$ and $e \sim_{a} \varepsilon$. Moreover, $\mathcal{M}, t \mid=\langle M, \varepsilon\rangle \varphi$. With $s \sim_{a} t$, we get $\mathcal{M}, s \vDash \hat{K}_{a}\langle M, \varepsilon\rangle \varphi$.
So, with $e \sim_{a} \varepsilon$, we get $\mathcal{M}, s \vDash V_{e \sim{ }_{a} \varepsilon} \hat{K}_{a}\langle M, \varepsilon\rangle \varphi$.
- $(\Leftarrow)[\ldots]$

May 27th, 2019
B. Nebel, R. Mattmüller - DEL

Validities and Axiomatisation

Proof (ctd.)

We prove the dual: $\langle M, e\rangle \hat{K}_{a} \varphi \leftrightarrow\left(\right.$ pre $\left.(e) \wedge \bigvee_{e \sim \sim_{\varepsilon}} \hat{K}_{a}\langle M, \varepsilon\rangle \varphi\right)$ is valid. Let $\mathcal{M}=(S, \sim, V)$ and $M=(E, \sim, p r e)$.

- (\Rightarrow) [...]
- (\Leftarrow Assume that $\mathcal{M}, s \vDash$ pre(e) and there is an event $\varepsilon \in E$ with $e \sim_{a} \varepsilon$ and $\mathcal{M}, s \neq \hat{K}_{a}\langle M, \varepsilon\rangle \varphi$. Then, $(s, e) \in \mathcal{D}(\mathcal{M} \otimes M)$ and there is a state $t \in S$ with $s \sim_{a} t$ and $\mathcal{M}, t \mid=\langle M, \varepsilon\rangle \varphi$. Thus $\mathcal{M}, t=\operatorname{pre}(\varepsilon)$, and $(t, \varepsilon) \in \mathcal{D}(\mathcal{M} \otimes M)$, and $(\mathcal{M} \otimes M,(t, \varepsilon)) \vDash \varphi$. With $s \sim_{a} t$ and $e \sim_{a} \varepsilon$, we get $(s, e) \sim_{a}(t, \varepsilon)$. Hence, $\mathcal{M} \otimes M,(s, e) \models \hat{K}_{a} \varphi$.
So, $\mathcal{M}, s \vDash\langle M, e\rangle \hat{K}_{a} \varphi$.

May 27th, 2019
B. Nebel, R. Mattmüller - DEL

62 / 69

Validities and Axiomatisation

Theorem
The axiomatisation AMC is sound and complete for the set of all valid formulas in $\mathcal{L}_{K C \otimes}$.
$\square[M, e] \neg \varphi \leftrightarrow(\operatorname{pre}(e) \rightarrow \neg[M, e] \varphi)$ (Action + negation)
$\square[M, e] K_{a} \varphi \leftrightarrow\left(\operatorname{pre}(e) \rightarrow \bigwedge_{e \sim{ }_{a} \varepsilon} K_{a}[M, \varepsilon] \varphi\right)$ (Action + knowl.)

