

		LUN FREBURG
		Introduction
		Syntax
		Semantics
		Revelations
Introduce	stion	Principles
miroduc		Common Knowledge
		Unsuccess- ful Updates
		Axiomatisati- on
		Example
		Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	2 / 61

Public Announcements	
5	FR
Appouncement – public and truthful appouncement	Introduction
Announcement = public and truting announcement	Syntax
Evemple	Semantics
Example	Revelations
I announce the fact: "The sun is shining".	Principles
This announcement makes the fact common knowledge.	Common Knowledge
This holds for all public announcements of true facts about the	Unsuccess- ful Updates
world.	Axiomatisati- on
It does not generally hold for all public announcements of true	Example
statements about knowledge.	Summary

Public Announcements

Example (ctd.)

Anne, Bill and Cath have drawn one card from a stack of three cards, 0, 1, 2. Anne has drawn 0, Bill has drawn 1 and Cath 2. Anne says: "I do not have card 1". (" $\neg 1_a$ ") Bill states: "I don't know Anne's card". (" $\neg (K_b 0_a \lor K_b 1_a \lor K_b 2_a)$ ") Anne says: "I know Bill's card". (" $K_a 0_b \lor K_a 1_b \lor K_a 2_b$ ") Anne says: "I have 0, Bill has 1, Cath has 2." (" $0_a \wedge 1_b \wedge 2_c$ ")


```
Hexa, 012 \models K_a \neg (K_b 0_a \lor K_b 1_a \lor K_b 2_a),
Hexa, 012 \models K_a \neg 1_a.
```

Public Anno	uncements	
		FRI
		Introduction
Example		Syntax
Anne, Bill and C	Cath have drawn one card from a s	stack of three Revelations
cards, 0, 1, 2. Ar	nne has drawn a 0, Bill has drawn	a 1 and Cath Principles
the 2.		Common Knowledge
Notation: We wi	ite 0_a for the fact that Anne has can be states, we write three digits for A	ard 0, etc. In Unsuccess- ful Unsuccess- ful Unsuccess- ful Unsuccess- ful Unsuccess- ful Unsuccess-
and Cath's card	, e.g., 012 to describe the actual of	card Axiomatisat
distribution.		Example
		Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	6 / 61

Public Announcements
Syntax

Public Announces Syntax	ments	BURG	
		NN N	
Definition (Language	es $\mathcal{L}_{\mathcal{K}[]}$ and $\mathcal{L}_{\mathcal{KC}[]}$)		Introduction
Let P be a countable s	set of atomic propositions and	d A be a	Syntax
finite set of agent sym	bols. Then the language $\mathcal{L}_{\mathit{KC}}$	n is defined	Semantics
by the following BNF:			Revelations
			Principles
$\phi ::= p \mid \neg \phi$	$\varphi \mid (\varphi \land \varphi) \mid K_a \varphi \mid C_B \varphi \mid [\varphi] \varphi$,	Common Knowledge
where $p \in P$, $a \in A$, ar	nd $B \subseteq A$.		Unsuccess- ful Updates
The language $\mathcal{L}_{\mathcal{K}[]}$ is t	he same without the C_B claus	se.	Axiomatisati on
			Example
$[\phi]\psi$ reads "after a tru ψ ". $\langle \phi \rangle \psi$ is the dual o announcement of ϕ , it	thful announcement of φ , it h f [φ] ψ : "after some truthful holds that ψ ".	olds that	Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	9 / 61	

Public Anno Syntax	ouncements	BURG
		L N N N N N N
		Introductio
Example		Syntax
In (Hexa, 012),	after Anne announces $\neg 1_a$, Cath	knows that 0 _a :
, , , , , , , , , , , , , , , , , , ,	2	Revelation
	Hexa,012 ⊨[¬1 _a]K _c 0 _a	Principles
		Common Knowledge
After Bill's anno Anne knows Bil	ouncement that he does not know I's card:	v Anne's card, ^{ful} Updates
Hexa	a,012 =[\neg 1 _a][\neg (K_b 0 _a \lor K_b 1 _a \lor K_b 2	$[2_a)]K_a 1_b$ Axiomatisa
or: Hexa	$012 - [-(K, 0, \sqrt{K}, 1, \sqrt{K}, 2,)]K_{-1}$	Example
01.110.44		Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	10 / 61

Public Anno Semantics	ouncements	
		FRE
Recall that, for write $[\![\phi]\!]_{\mathcal{M}} = \{ s \in \mathbb{N} \}$	models \mathcal{M} with domain S and form $s \in S \mid \mathcal{M}, s \models \varphi$.	mulas φ , we Syntax
Definition Let $\mathcal{M} = (S, R, T)$	V) be an epistemic model and φ a	Revelations Principles a formula.
Then $\mathcal{M} _{\varphi} = (S$ $\mathcal{S}' = \llbracket \varphi \rrbracket_{\mathcal{M}}$	(K',R',V') with	Unsuccess- ful Updates
$ R'_a = R_a \cap ($ $ V'(p) = V(p)$	$(m{S}' imes m{S}')$ for all $m{a} \in m{A},$ and $m{v}) \cap m{S}'.$	Axiomatisat on Example Summary
		Connery

Public Announcements Semantics

Definition

The truth of an $\mathcal{L}_{K[I]}$ (or $\mathcal{L}_{KC[I]}$) formula φ in an epistemic state (\mathcal{M}, s) , symbolically $\mathcal{M}, s \models \varphi$, is defined as for $\mathcal{L}_{\mathcal{K}}$ (or $\mathcal{L}_{\mathcal{KC}}$), with an additional clause for public announcements:

 $\mathcal{M}, s \models [\varphi] \psi$ iff $(\mathcal{M}, s \models \varphi \text{ implies } \mathcal{M}|_{\varphi}, s \models \psi).$

Note: $[\phi]\psi$ is satisfied in *s* if ϕ is not satisfied in *s*.

The dual $\langle \phi \rangle \psi = \neg [\phi] \neg \psi$ has the truth condition $\mathcal{M}, s \models \varphi$ and $\mathcal{M}|_{\varphi}, s \models \psi$.

May 13th, 2019

B. Nebel, R. Mattmüller - DEL

BURG

Semantics

Revelations

Principles

Knowledge

Axiomatisati

Example

ful

on

13/61

Principles of Public Announcement Logics

UNI FREIBURG Principles of Public Announcement Logics Syntax Proposition (Functionality) It is valid that $\langle \phi \rangle \psi \rightarrow [\phi] \psi$. Revelations Principles Proof. Knowledge Let \mathcal{M}, s be arbitrary. Assume that $\mathcal{M}, s \models \langle \phi \rangle \psi$. ful This is true if and only if $\mathcal{M}, s \models \varphi$ and $\mathcal{M}|_{\varphi}, s \models \psi$. Updates Axiomatisa This implies that $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}|_{\varphi}, s \models \psi$, i.e., on $\mathcal{M}, s \models [\varphi] \psi.$ Summary B. Nebel, R. Mattmüller - DEL 18/61 May 13th, 2019

Principles of Public Announcement Logics

Proposition All of the following are equivalent: 1 $\varphi \rightarrow [\varphi] \psi$ 2 $\phi \rightarrow \langle \phi \rangle \psi$ 3 [φ]ψ Proof ((1) iff (3); Rest: homework). $\mathcal{M}, s \models \varphi \rightarrow [\varphi] \psi$ iff $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, s \models [\varphi] \psi$ iff $\mathcal{M}, s \models \varphi$ implies $(\mathcal{M}, s \models \varphi \text{ implies } \mathcal{M}|_{\varphi}, s \models \psi)$ iff $(\mathcal{M}, s \models \varphi \text{ and } \mathcal{M}, s \models \varphi)$ implies $\mathcal{M}|_{\varphi}, s \models \psi$ iff $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}|_{\varphi}, s \models \psi$ iff $\mathcal{M}, s \models [\varphi] \psi$.

Proposition (Knowledge) $[\phi]K_a\psi$ is equivalent to $\phi \to K_a[\phi]\psi$.

Proof.

$\mathcal{M}, \pmb{s} \models \pmb{\varphi} ightarrow \pmb{K_a}[\pmb{\varphi}] \pmb{\psi}$	iff $\mathcal{M}, s \models \varphi$ implies $\mathcal{M}, s \models \mathcal{K}_a[\varphi] \psi$
	iff $\mathcal{M}, s \models \phi$ implies
	$(\mathcal{M},t\models arphi ext{ implies }\mathcal{M} _arphi,t\models \psi)$
	for all t such that $(s,t) \in R_a$
	iff $\mathcal{M}, \boldsymbol{s} \models \boldsymbol{\varphi}$ implies
	$(\mathcal{M},t\modelsarphi$ and $(s,t)\in R_{a}$
	implies $\mathcal{M} _{arphi},t\models \psi$) for all $t\in \mathcal{S}$
	iff $\mathcal{M}, \boldsymbol{s} \models \boldsymbol{\varphi}$ implies
	$((m{s},t)\in R_a ext{ implies } \mathcal{M} _arphi,t\models \psi)$
	for all $t \in \llbracket arphi rbracket$
	iff $\mathcal{M}, s \models \varphi$ implies $(\mathcal{M} _{\varphi}, s \models K_a \psi)$
	$\text{iff } \mathcal{M}, \boldsymbol{s} \models [\boldsymbol{\varphi}] \mathcal{K}_{\boldsymbol{a}} \boldsymbol{\psi}. \qquad \Box$

Question: Can we also systematically eliminate announcement modalities as shown above in the presence of the commom **Svntax** knowledge modality? Revelations Principles Recall: Common $[\phi]K_a\psi \leftrightarrow (\phi \rightarrow K_a[\phi]\psi)$ is valid. Knowledge Attempted generalization to common knowledge: Updates Axiomatis $[\varphi]C_B\psi \leftrightarrow (\varphi \to C_B[\varphi]\psi).$ on Problem: This is invalid! B. Nebel, R. Mattmüller - DEL 30 / 61 May 13th, 2019

Announcements and Common Knowledge

So, how to relate announcements and common knowledge?

Proposition (Announcements and common knowledge) If $\chi \to [\phi]\psi$ and $(\chi \land \phi) \to E_B\chi$ are valid, then $\chi \to [\phi]C_B\psi$ is valid.

Proof.

Let \mathcal{M}, s be arbitrary and suppose that $\mathcal{M}, s \models \chi$. We want to show that $\mathcal{M}, s \models [\varphi]C_B\psi$. Suppose $\mathcal{M}, s \models \varphi$, and let *t* be in the domain of $\mathcal{M}|_{\varphi}$ such that sR_B^*t . We prove $\mathcal{M}|_{\varphi}, t \models \psi$ by induction over the path length from *s* to *t*. [...]

Announcements and Common Knowledge

Proof (ctd.)

[...]

Base case: If the path length is 0, then s = t and $\mathcal{M}|_{\varphi}, s \models \psi$, which follows from $\mathcal{M}, s \models \chi, \mathcal{M}, s \models \varphi$, and the validity of $\chi \rightarrow [\varphi]\psi$.

UNI FREIBURG

> Syntax Semantics

Revelations

Principles

Common Knowledge

Axiomatisati

Example

Summary

ful Updates

on

33 / 61

■ Inductive case: Assume that the path length is *n* + 1 for some *n* ∈ N, with $sR_auR_B^*t$ for *a* ∈ *B* and *u* ∈ $\mathcal{M}|_{\varphi}$. From $\mathcal{M}, s \models \chi, \mathcal{M}, s \models \varphi$, from the validity of $(\chi \land \varphi) \rightarrow E_B \chi$, and sR_au , it follows that $\mathcal{M}, u \models \chi$. Because *u* is in the doamin of $\mathcal{M}|_{\varphi}$, we know that $\mathcal{M}, u \models \varphi$. Now, we can apply the induction hypothesis to the length-*n* path from *u* to *t*, which gives us $\mathcal{M}|_{\varphi}, t \models \psi$.

May 13th, 2019

B. Nebel, R. Mattmüller – DEL

Announcements	and Common Knowledge		
Corollary $[\varphi]\psi$ is valid iff $[\varphi]C_B$ Proof. (\Leftarrow) trivial (\Rightarrow) previous propo	ψ is valid. osition with χ = $ op$		Introduction Syntax Semantics Revelations Principles Common Knowledge Usuccess- ful Updates Axiomatisati- on Example Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	34 / 61	

Unsuccessful Up	odates		BURG
Definition		Z	FRE
Given a formula $\varphi \in$	$\mathcal{L}_{\mathcal{V}CII}$ and an epistemic stat	te (M.s), we	Introduction
define:			Syntax
ω is a successfi	ul formula iff [ø]ø is valid		Semantics
	estul formula iff it is not sur	coestul	Principles
φ is a successful φ is a successful φ	al update in (\mathcal{M}, s) iff \mathcal{M}, s	$\models \langle \varphi \rangle \varphi.$	Common Knowledge
$\blacksquare \varphi$ is an unsucce	essful update in $(\mathcal{M}, \boldsymbol{s})$ iff \mathcal{N}	$\mathcal{A}, \boldsymbol{s} \models \langle \boldsymbol{\varphi} \rangle \neg \boldsymbol{\varphi}.$	Unsuccess- ful Updates
Note:			Axiomatisati- on
Updates with tru	le successful formulas are	always	Example
successful.		2	Summary
Updates with ur (Homework: Example)	nsuccessful formulas can be ample?)	e successful.	
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	36 / 61	

Unsuccessful Updates

Syntax

Semantics Revelations

Principles

Knowledge Unsuccessful

Updates

Example

37 / 61

Axiomatisati on

Question: Can we characterize successful formulas syntactically?

Answer: Not trivially, since it is possible that φ and ψ are successful, but their conjuction or disjunction are not. (Homework: find such formulas and discuss!)

Idea for an easy result: Announcing something that is already public knowledge should not affect existing knowledge. Formally: it we restrict the model in such a way that only "irrelevant" worlds are lost, public knowledge remains public knowledge.

May 13th, 2019

B. Nebel, R. Mattmüller - DEL

Unsuccessful Up	odates	BURG
Definition (Submod We call a model \mathcal{M}' R and V are restricte	lel) a submodel of $\mathcal M$ if $\mathcal D(\mathcal M') \subseteq$ d accordingly.	$\mathcal{D}(\mathcal{M})$ and $\operatorname{Syntax}_{\operatorname{Semantics}}$
Proposition (Public Let $\varphi \in \mathcal{L}_{\mathcal{KC}[]}$. Then [knowledge updates are su $C_A \varphi] C_A \varphi$ is valid.	CCESSFUI) Common Knowledge Unsuccess ful Updates
Proof sketch. Let (\mathcal{M}, s) be arbitrar $\mathcal{M}, t \models \varphi$ and even \mathcal{M} R_A^* -reachable submo Hence $\mathcal{M} _{C_A \varphi}, s \models C_A$	ry and assume that $\mathcal{M}, s \models C_A$ $\mathcal{A}, t \models C_A \varphi$ for all t with $sR_A^* t$. dels of $\mathcal{M} _{C_A \varphi} = \mathcal{M} _{\varphi}$ are iden ${}_{4}\varphi$, i. e., $\mathcal{M}, s \models [C_A \varphi]C_A \varphi$.	Axiomatisat on Example Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	38 / 61

Unsuccessful Up	odates	BURG
Back to the previous are successful): Let upreservation of truth	positive result (public knowledge us try to generalize the idea of under submodels.	updates Semantics
Definition The language $\mathcal{L}^{0}_{\mathcal{KC}[]}$ is	s the following fragment of $\mathcal{L}_{\mathcal{KC}[]}$:	Revelations Principles Common Knowledge
$\varphi ::= p \mid \neg p \mid (q$	$(\varphi \wedge \varphi) \mid (\varphi \lor \varphi) \mid K_a \varphi \mid C_B \varphi \mid [\neg \varphi]$	φ. Unsuccess- ful Updates Axiomatisati on
A formula φ is present and all submodels \mathcal{N} also $\mathcal{M}', s \models \varphi$.	rved under submodels iff, for all (\mathcal{N} \mathcal{U}' of \mathcal{M} with $s \in \mathcal{D}(\mathcal{M}')$, if $\mathcal{M}, s \models$	(\mathcal{M}, s) Example Summary φ , then
May 13th. 2019	B. Nebel, R. Mattmüller – DEL	40 / 61

May 13th, 2019

UNI FREIBURG Unsuccessful Updates Proof (ctd.) Inductive case $[\neg \phi]\psi$: Suppose $\mathcal{M}, s \models [\neg \phi]\psi$ and Syntax suppose for contradiction that $\mathcal{M}', s \not\models [\neg \phi] \psi$. This implies Semantics $\mathcal{M}', s \models \neg \varphi$ and $\mathcal{M}'|_{\neg \varphi}, s \not\models \psi$. Using the contrapositive of Revelations the induction hypothesis, we arrive at $\mathcal{M}, s \models \neg \phi$. Principles Moreover $\mathcal{M}'|_{\neg \varphi}$ is a submodel of $\mathcal{M}|_{\neg \varphi}$, because $t \in S'$ Knowledge only survives if $\mathcal{M}', t \models \neg \phi$. Again by induction Unsuccesshypothesis, $\mathcal{M}, t \models \neg \varphi$, so $\llbracket \neg \varphi \rrbracket_{\mathcal{M}'} \subseteq \llbracket \neg \varphi \rrbracket_{\mathcal{M}}$. But from ful Updates $\mathcal{M}, s \models [\neg \varphi] \psi$ and $\mathcal{M}, s \models \neg \varphi$ it follows that $\mathcal{M}|_{\neg \varphi}, s \models \psi$, Axiomatisat therefore, by induction hypothesis, $\mathcal{M}'|_{\neg \varphi}$, $s \models \psi$, which is on a contradiction. Example Summary Homework: What about formulas of the form $\hat{K}_a \varphi$, or $[\varphi] \psi$? Are they also preserved under submodels? If not, why not? Counterexamples?

Unsuccessful Upda	ites		מאכ
Corollary		N	FKE
Let $\omega \in C^0$. Then ω –	• [@]@ is valid		Introduction
Let $\varphi \in \mathcal{Z}_{KC[]}$. Then φ			Syntax
			Semantics
Proof.			Revelations
Previous proposition wit	h $\psi = \varphi$.		Principles
			Common Knowledge
Corollary ($\mathcal{L}^{0}_{\mathcal{KC}[]}$ formu	las are successful)		Unsuccess- ful Updates
Let $arphi \in \mathcal{L}^{0}_{\mathit{KC}[]}$. Then $[arphi] arphi$	o is valid.		Axiomatisati- on
			Example
Proof.			Summary
Previous corollary using	equivalence of $\phi \rightarrow [\phi]\phi$ and	d	
[φ]φ.	,		
May 13th, 2019 B	. Nebel, R. Mattmüller – DEL	45 / 61	

- $\blacksquare \ [\phi] \neg \psi \leftrightarrow (\phi \rightarrow \neg [\phi] \psi) \ (\text{Announcement + negation})$
- $\blacksquare \ [\phi](\psi \land \chi) \leftrightarrow ([\phi]\psi \land [\phi]\chi) \ \text{(Announcement + conj.)}$
- $\blacksquare \ [\phi] K_a \psi \leftrightarrow (\phi \rightarrow K_a[\phi] \psi) \ (\text{Announcement + knowledge})$

BURG

Syntax Semantics

Revelations

Principles

Knowledge

Updates

Axiomatisati on

Without Common Knowledge

Knowledge Example

Summary

49/61

NNI NNI NNI

- $[\phi][\psi]\chi \leftrightarrow [\phi \land [\phi]\psi]\chi$ (Composition of announcements)
- From φ and $\varphi \rightarrow \psi$, infer ψ . (Modus ponens)
- **From** φ , infer $K_a \varphi$. (Necessitation)
- May 13th, 2019

B. Nebel, R. Mattmüller - DEL

Axiomatisatio PA)n		FREIBURG
			Introduction
			Syntax
Note: in example derivations, we will get sloppier occasionally skip steps, especially those that invo	derivations, we will get sloppier over f	over time and	Revelations
	olve purely	Principles	
propositional reasoning. Hence, the given deriva		tions may not	Common Knowledge
be derivations in should always be	the formal sense, strictly speaki clear how to fill in the missing c	ng, but it letails/steps.	Unsuccess- ful Updates
			Axiomatisati-
			Without Common Knowledge With Common Knowledge
			Example
			Summary
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	50 / 61	

F Ρ

ŀ

Ν

Axiomatisatio	on	BURG
Axioms and infer all axioms a $C_B(\varphi \rightarrow \psi)$ $C_B \varphi \rightarrow (\varphi \land \varphi)$ $C_B(\varphi \rightarrow E_B \varphi)$ (Inducti From φ , infer (Neccess) From $\chi \rightarrow [\varphi]$ (Mix of	Pence rules for logic $\mathcal{L}_{KC[]}$ ($B \subseteq A$) and inference rules of $\mathcal{L}_{K[]}$ $\rightarrow (C_B \varphi \rightarrow C_B \psi)$ (Distribution of $E_B C_B \varphi$) (Mix) $\varphi) \rightarrow (\varphi \rightarrow C_B \varphi)$ on of common knowledge) er $C_B \varphi$. ssitation of common knowledge) er $[\psi] \varphi$. (Neccessitation of annou $\varphi] \psi$ and $\chi \land \varphi \rightarrow E_B \chi$, infer $\chi \rightarrow$ announcements and common knowledge)): Introduction $f C_B \text{ over } \rightarrow$) Introduction $f C_B \text{ over } \rightarrow$) $f C_B \text{ over } \rightarrow$) Principles Common Knowledge Unsuccess $Unsuccess UnsuccessUnsuccess UnsuccessUnsucce$
lay 13th, 2019	B. Nebel, R. Mattmüller – DEL	53 / 61

Muddy Children

UNI FREIBURG Example (Muddy children) There are *n* children. Some of them have a muddy Semantics forehead. Revelations They only see whether the other children are muddy, not Principles themselves. Knowledge They are perfect reasoners/logicians. ful Their father says (repeatedly): "At least one of you is Updates Axiomatisati muddy. Those of you who know whether they are muddy on please raise your hand." Example Announcements: Raising hands or not. B. Nebel, R. Mattmüller - DEL 57/61 May 13th, 2019

UNI FREIBURG Muddy Children We look at example with three children (*a*, *b*, and *c*), where *a* **Svntax** and *b* are muddy, while *c* not, i. e., $m_a \wedge m_b \wedge \neg m_c$. Revelations Principles Some abbreviations: Knowledge muddy = $m_a \vee m_b \vee m_c$. knowmuddy = $(K_a m_a \lor K_a \neg m_a) \lor (K_b m_b \lor K_b \neg m_b) \lor (K_c m_c \lor K_c \neg m_c)^{\text{lates}}$ Axiomatis abknowmuddy = $(K_a m_a \vee K_a \neg m_a) \wedge (K_b m_b \vee K_b \neg m_b)$. on Example Summary May 13th, 2019 B. Nebel, R. Mattmüller - DEL 58/61

Summary		REBURG
 Public anno Semantics: Without cor With comm Announcen Preserved Sound and 	buncements change knowledge via submodels mmon knowledge: $\mathcal{L}_{\mathcal{K}[]}$ can be re on knowledge: not. nents can be successful or unsu formulas are successful complete axiomatizations exist.	state. educed to \mathcal{L}_{K} . cccessful. \mathcal{L}_{K} . \mathcal{L}_{K} .
May 13th, 2019	B. Nebel, R. Mattmüller – DEL	61 / 61