Dynamic Epistemic Logic
 3. Public Announcements

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
May 13th, 2019

Introduction
Syntax
Semantics
Revelations

Introduction

Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary

Public Announcements

So far: Only static knowledge(Or, where knowledge changed over time, we discussed this change onlyintuitively, not formally.)

Now: How to model change of knowledge over time?
Note: Knowledge may change in different ways, e. g., via public or private announcements, by sensing, or by ontic (world-changing) actions that affect knowledge along the way.

This chapter: Only public announcements.

Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation

Example
Summary

Public Announcements

Announcement = public and truthful announcement
ExampleI announce the fact: "The sun is shining".This announcement makes the fact common knowledge.This holds for all public announcements of true facts about theworld.It does not generally hold for all public announcements of truestatements about knowledge.

Public Announcements

Example (Unsuccessful update)

I announce: " p is true, but Bob does not know it" $\left(p \wedge \neg K_{b} p\right)$.
As Bob hears my announcement, he now knows p, and the announced formula $p \wedge \neg K_{b} p$ becomes false!

Intuition: How should epistemic models look like before and after?

Before:

After: Only those states survive where the announced formula is true.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Public Announcements

Example

Anne, Bill and Cath have drawn one card from a stack of three cards, $0,1,2$. Anne has drawn a 0 , Bill has drawn a 1 and Cath the 2.

Notation: We write 0_{a} for the fact that Anne has card 0 , etc. In order to describe states, we write three digits for Anne's, Bill's, and Cath's card, e. g., 012 to describe the actual card distribution.

Example (ctd.)

Anne, Bill and Cath have drawn one card from a stack of three cards, $0,1,2$. Anne has drawn 0, Bill has drawn 1 and Cath 2.
Anne says: "I do not have card 1". (" $\neg 1$ ")
Bill states: "I don't know Anne's card". (" $\neg\left(K_{b} 0_{a} \vee K_{b} 1_{a} \vee K_{b} 2_{a}\right)$ ")
Anne says: "I know Bill's card". (" $K_{a} 0_{b} \vee K_{a} 1_{b} \vee K_{a} 2_{b}$ ")
Anne says: "I have 0, Bill has 1, Cath has 2." (" $0_{a} \wedge 1_{b} \wedge 2_{c}$ ")

Hexa:

Hexa, $012=K_{a} \neg\left(K_{b} 0_{a} \vee K_{b} 1_{a} \vee K_{b} 2_{a}\right)$,
Hexa, $012 \mid=K_{a} \neg 1_{a}$.

Introduction
Syntax

Semantics

Revelations

Announcement Syntax

Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Public Announcements Syntax

Definition (Languages $\mathcal{L}_{K[]}$ and $\left.\mathcal{L}_{K C[]}\right)$

Let P be a countable set of atomic propositions and A be a finite set of agent symbols. Then the language $\mathcal{L}_{K C[]}$ is defined by the following BNF:

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|K_{a} \varphi\right| C_{B} \varphi \mid[\varphi] \varphi,
$$

where $p \in P, a \in A$, and $B \subseteq A$.
The language $\mathcal{L}_{K]}$ is the same without the C_{B} clause.
$[\varphi] \psi$ reads "after a truthful announcement of φ, it holds that

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary $\psi " .\langle\varphi\rangle \psi$ is the dual of $[\varphi] \psi$: "after some truthful announcement of φ, it holds that ψ ".

Public Announcements
 Syntax

Introduction

Example

In (Hexa, 012), after Anne announces $\neg 1_{a}$, Cath knows that 0_{a} :

$$
\text { Неха, } 012 \neq\left[\neg 1_{a}\right] K_{c} 0_{a}
$$

After Bill's announcement that he does not know Anne's card, Anne knows Bill's card:

$$
\begin{aligned}
\text { Hexa, 012 } & =\left[\neg 1_{a}\right]\left[\neg\left(K_{b} 0_{a} \vee K_{b} 1_{a} \vee K_{b} 2_{a}\right)\right] K_{a} 1_{b} \\
\text { or: Hexa', 012 } & =\left[\neg\left(K_{b} 0_{a} \vee K_{b} 1_{a} \vee K_{b} 2_{a}\right)\right] K_{a} 1_{b}
\end{aligned}
$$

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-

Example
Summary

Introduction
Syntax
Semantics
Revelations

Announcement Semantics

Principles

Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Public Announcements

Semantics

Introduction
Recall that, for models \mathcal{M} with domain S and formulas φ, we write $\llbracket \varphi \rrbracket_{\mathcal{M}}=\{s \in S \mid \mathcal{M}, s \vDash \varphi\}$.

Definition
Let $\mathcal{M}=(S, R, V)$ be an epistemic model and φ a formula.
Then $\left.\mathcal{M}\right|_{\varphi}=\left(S^{\prime}, R^{\prime}, V^{\prime}\right)$ with
$\square S^{\prime}=\llbracket \varphi \rrbracket_{\mathcal{M}}$,

- $R_{a}^{\prime}=R_{a} \cap\left(S^{\prime} \times S^{\prime}\right)$ for all $a \in A$, and
- $V^{\prime}(p)=V(p) \cap S^{\prime}$.

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary

Public Announcements

Semantics

Introduction

Definition

Syntax
The truth of an $\mathcal{L}_{K[]}$ (or $\mathcal{L}_{K C[]}$) formula φ in an epistemic state (\mathcal{M}, s), symbolically $\mathcal{M}, s \vDash \varphi$, is defined as for \mathcal{L}_{K} (or $\mathcal{L}_{K C}$), with an additional clause for public announcements:

$$
\mathcal{M}, s \mid=[\varphi] \psi \quad \text { iff } \quad\left(\mathcal{M}, s \vDash \varphi \text { implies }\left.\mathcal{M}\right|_{\varphi}, s \vDash \psi\right) .
$$

Note: $[\varphi] \psi$ is satisfied in s if φ is not satisfied in s.
The dual $\langle\varphi\rangle \psi=\neg[\varphi] \neg \psi$ has the truth condition $\mathcal{M}, s \vDash \varphi$ and $\left.\mathcal{M}\right|_{\varphi}, s \vDash \psi$.

Introduction
Syntax

Semantics

Announcements and Revelations

Revelations

Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation

Example
Summary

Public Announcements

Question: Who actually makes the announcement?

- One of the agents?
- An omniscient external entity?
- If agent a announces φ, she must know φ, and could also announce $K_{a} \varphi$. This can make a difference!
- If the announcement comes from the outside, it is just [φ]. This is also called a revelation.

Introduction
Syntax
Semantics

Principles of Public Announcement Logics

Revelations
Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation

Example
Summary

Principles of Public Announcement Logics

Introduction
Syntax
Semantics
Revelations
Motivation: In this section, we will prove some valid formulas of the language $\mathcal{L}_{K]}$ that will ultimately allow us to reduce $\mathcal{L}_{K]}$ to \mathcal{L}_{K} and get rid of announcement modalities.

Principles of Public Announcement Logics

Proposition (Functionality)

Proof.

Let \mathcal{M}, s be arbitrary. Assume that $\mathcal{M}, s \equiv\langle\varphi\rangle \psi$. This is true if and only if $\mathcal{M}, s \neq \varphi$ and $\left.\mathcal{M}\right|_{\varphi}, s \neq \psi$. This implies that $\mathcal{M}, s \vDash \varphi$ implies $\left.\mathcal{M}\right|_{\varphi}, s \vDash \psi$, i. e., $\mathcal{M}, s=[\varphi] \psi$.

Principles of Public Announcement Logics

Question: What about the opposite direction? Is $[\varphi] \psi \rightarrow\langle\varphi\rangle \psi$ also valid?

Proposition

$[\varphi] \psi \rightarrow\langle\varphi\rangle \psi$ is not valid.

Proof.

Counterexample: model \mathcal{M} with a single state s where atom p is false. Then $\mathcal{M}, s \neq[p] p$, but $\mathcal{M}, s \not \vDash\langle p\rangle p$.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-

Principles of Public Announcement Logics

Proposition (Partiality)
$\langle\varphi\rangle$ T is not valid.

Proof.

In any epistemic state (\mathcal{M}, s) with $\mathcal{M}, s \not \models \varphi$, we have $\mathcal{M}, s \neq\langle\varphi\rangle$.

Introduction

Principles of Public Announcement Logics

Proposition (Negation)

$[\varphi] \neg \psi \leftrightarrow(\varphi \rightarrow \neg[\varphi] \psi)$ is valid.

Proof.

Omitted. Note that the biimplication can be equivalently written as $[\varphi] \neg \psi \leftrightarrow(\neg \varphi \vee\langle\varphi\rangle \neg \psi)$.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Proposition

All of the following are equivalent:
$1 \varphi \rightarrow[\varphi] \psi$
$2 \varphi \rightarrow\langle\varphi\rangle \psi$
$3[\varphi] \psi$
Proof ((1) iff (3); Rest: homework).
$\mathcal{M}, s \equiv \varphi \rightarrow[\varphi] \psi \quad$ iff $\quad \mathcal{M}, s=\varphi$ implies $\mathcal{M}, s \vDash[\varphi] \psi$
iff $\quad \mathcal{M}, s \mid=\varphi$ implies
$\left(\mathcal{M}, s \neq \varphi\right.$ implies $\left.\left.\mathcal{M}\right|_{\varphi}, s \neq \psi\right)$
iff $\quad(\mathcal{M}, s \mid=\varphi$ and $\mathcal{M}, s \vDash \varphi)$ implies

$$
\left.\mathcal{M}\right|_{\varphi}, s \neq \psi
$$

iff $\mathcal{M}, s \mid=\varphi$ implies $\left.\mathcal{M}\right|_{\varphi}, s \vDash \psi$
iff $\quad \mathcal{M}, s \mid=[\varphi] \psi$.

Principles of Public Announcement Logics

Proposition

All of the following are equivalent:
$1\langle\varphi\rangle \psi$
$2 \varphi \wedge\langle\varphi\rangle \psi$
उ $\varphi \wedge[\varphi] \psi$

Proof.

Clear.

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Principles of Public Announcement Logics

Proposition (Composition)

$[\varphi][\psi] \chi$ is equivalent to $[\varphi \wedge[\varphi] \psi] \chi$.

Proof.

For arbitrary (\mathcal{M}, s), we have

$$
\begin{array}{ll}
\left.s \in \mathcal{M}\right|_{\varphi \wedge[\varphi] \psi} \quad & \text { iff } \mathcal{M}, s \mid=\varphi \wedge[\varphi] \psi \\
& \text { iff } \mathcal{M}, s \mid=\varphi \text { and } \\
& \left(\mathcal{M}, s=\varphi \text { implies }\left.\mathcal{M}\right|_{\varphi}, s \mid=\psi\right) \\
& \text { iff }\left.s \in \mathcal{M}\right|_{\varphi} \text { and }\left.\mathcal{M}\right|_{\varphi}, s \mid=\psi \\
& \text { iff }\left.s \in\left(\left.\mathcal{M}\right|_{\varphi}\right)\right|_{\psi} .
\end{array}
$$

Principles
Introduction

Principles of Public Announcement Logics

Let us now study how knowledge changes with announcements.

We find that $[\varphi] K_{a} \psi$ is not equivalent to $K_{a}[\varphi] \psi$.
Counterexample: Hexa, $012=\left[1{ }_{a}\right] K_{c} 0_{a}$, but Нexa, $012 \not \vDash K_{c}\left[1_{a}\right] 0_{a}$.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Proposition (Knowledge)

$[\varphi] K_{a} \psi$ is equivalent to $\varphi \rightarrow K_{a}[\varphi] \psi$.

Proof.

$$
\mathcal{M}, s \vDash \varphi \rightarrow K_{a}[\varphi] \psi \quad \text { iff } \mathcal{M}, s \vDash \varphi \text { implies } \mathcal{M}, s \vDash K_{a}[\varphi] \psi
$$

iff $\mathcal{M}, s=\varphi$ implies
$\left(\mathcal{M}, t \vDash \varphi\right.$ implies $\left.\left.\mathcal{M}\right|_{\varphi}, t \vDash \psi\right)$
for all t such that $(s, t) \in R_{a}$
iff $\mathcal{M}, s \vDash \varphi$ implies
$\left(\mathcal{M}, t=\varphi\right.$ and $(s, t) \in R_{a}$ implies $\left.\left.\mathcal{M}\right|_{\varphi}, t=\psi\right)$ for all $t \in S$
iff $\mathcal{M}, s \vDash \varphi$ implies
$\left((s, t) \in R_{a}\right.$ implies $\left.\left.\mathcal{M}\right|_{\varphi}, t \mid=\psi\right)$
for all $t \in \llbracket \varphi \rrbracket$
iff $\mathcal{M}, s \vDash \varphi$ implies $\left(\left.\mathcal{M}\right|_{\varphi}, s \mid=K_{a} \psi\right)$
iff $\mathcal{M}, s \equiv[\varphi] K_{a} \psi$.

Principles of Public Announcement Logics

Proposition (Reduction)

All of the following schemas are valid:
$1[\varphi] p \leftrightarrow(\varphi \rightarrow p)$ for all $p \in P$
$2[\varphi](\psi \wedge \chi) \leftrightarrow([\varphi] \psi \wedge[\varphi] \chi)$
B $[\varphi](\psi \rightarrow \chi) \leftrightarrow([\varphi] \psi \rightarrow[\varphi] \chi)$
4. $[\varphi] \neg \psi \leftrightarrow(\varphi \rightarrow \neg[\varphi] \psi)$

5 [φ] $K_{a} \psi \leftrightarrow\left(\varphi \rightarrow K_{a}[\varphi] \psi\right)$
6 $[\varphi][\psi] \chi \leftrightarrow[\varphi \wedge[\varphi] \psi] \chi$

Proof.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example

We already showed (4), (5), and (6). The others are an easy homework exercise.

Principles of Public Announcement Logics

Introduction

Note: Using this proposition, one can reduce any $\mathcal{L}_{K]}$ formula to an \mathcal{L}_{K} formula. This means that both logics are equally expressive, and that we can use \mathcal{L}_{K} theorem provers or model checkers for $\mathcal{L}_{K]}$ as well.

Introduction
Syntax
Semantics

Announcements and Common Knowledge

Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Announcements and Common Knowledge

Question: Can we also systematically eliminate announcement modalities as shown above in the presence of the commom knowledge modality?

Recall:

$$
[\varphi] K_{a} \psi \leftrightarrow\left(\varphi \rightarrow K_{a}[\varphi] \psi\right) \text { is valid. }
$$

Attempted generalization to common knowledge:

$$
[\varphi] C_{B} \psi \leftrightarrow\left(\varphi \rightarrow C_{B}[\varphi] \psi\right) .
$$

Introduction

Problem: This is invalid!

Announcements and Common Knowledge

Counterexample:
Introduction
Before announcement of p :
$s: p, q \quad a \quad s^{\prime}: \neg p, q \quad b \quad s^{\prime \prime}: p, \neg q$

After announcement of p :
$s: p, q$

$$
s^{\prime \prime}: p, \neg q
$$

$$
\begin{aligned}
& \mathcal{M}, s \mid=[p] C_{a b} q \\
& \mathcal{M}, s \not \equiv p \rightarrow C_{a b}[p] q
\end{aligned}
$$

Announcements and Common Knowledge

So, how to relate announcements and common knowledge?
Proposition (Announcements and common knowledge)
If $\chi \rightarrow[\varphi] \psi$ and $(\chi \wedge \varphi) \rightarrow E_{B} \chi$ are valid, then $\chi \rightarrow[\varphi] C_{B} \psi$ is

Introduction

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation

Example
Summary

Announcements and Common Knowledge

Proof (ctd.)

[...]

- Base case: If the path length is 0 , then $s=t$ and $\left.\mathcal{M}\right|_{\varphi, s} \vDash \psi$, which follows from $\mathcal{M}, s \mid=\chi, \mathcal{M}, s \vDash \varphi$, and the validity of $\chi \rightarrow[\varphi] \psi$.
- Inductive case: Assume that the path length is $n+1$ for some $n \in \mathbb{N}$, with $s R_{a} u R_{B}^{*} t$ for $a \in B$ and $\left.u \in \mathcal{M}\right|_{\varphi}$. From $\mathcal{M}, s \vDash \chi, \mathcal{M}, s \vDash \varphi$, from the validity of $(\chi \wedge \varphi) \rightarrow E_{B} \chi$, and $s R_{a} u$, it follows that $\mathcal{M}, u=\chi$. Because u is in the doamin of $\left.\mathcal{M}\right|_{\varphi}$, we know that $\mathcal{M}, u \mid=\varphi$. Now, we can apply the induction hypothesis to the length- n path from u

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisati-

Example
Summary to t, which gives us $\left.\mathcal{M}\right|_{\varphi}, t \vDash \psi$.

Corollary

$[\varphi] \psi$ is valid iff $[\varphi] C_{B} \psi$ is valid.

Proof.

(\Leftrightarrow) trivial
\Leftrightarrow previous proposition with $\chi=\top$

Introduction
Syntax
Semantics

Revelations
Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation

Example
Summary

Introduction
Syntax

Semantics

Revelations

Unsuccessful Updates

Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary

Unsuccessful Updates

Definition

Given a formula $\varphi \in \mathcal{L}_{K C[]}$ and an epistemic state (\mathcal{M}, s), we define:
$\square \varphi$ is a successful formula iff $[\varphi] \varphi$ is valid.

- φ is an unsuccessful formula iff it is not successful.
$\square \varphi$ is a successful update in (\mathcal{M}, s) iff $\mathcal{M}, s \vDash\langle\varphi\rangle \varphi$.
■ φ is an unsuccessful update in (\mathcal{M}, s) iff $\mathcal{M}, s \vDash\langle\varphi\rangle \neg \varphi$.
Note:
- Updates with true successful formulas are always successful.

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary

- Updates with unsuccessful formulas can be successful. (Homework: Example?)

Unsuccessful Updates

Question: Can we characterize successful formulas syntactically?

Answer: Not trivially, since it is possible that φ and ψ are successful, but their conjuction or disjunction are not. (Homework: find such formulas and discuss!)

Idea for an easy result: Announcing something that is already public knowledge should not affect existing knowledge. Formally: it we restrict the model in such a way that only "irrelevant" worlds are lost, public knowledge remains public knowledge.

Unsuccessful Updates

Definition (Submodel)

We call a model \mathcal{M}^{\prime} a submodel of \mathcal{M} if $\mathcal{D}\left(\mathcal{M}^{\prime}\right) \subseteq \mathcal{D}(\mathcal{M})$ and R and V are restricted accordingly.

Proposition (Public knowledge updates are successful)
Let $\varphi \in \mathcal{L}_{K C[]}$. Then $\left[C_{A} \varphi\right] C_{A} \varphi$ is valid.

Proof sketch.
Let (\mathcal{M}, s) be arbitrary and assume that $\mathcal{M}, s \vDash C_{A} \varphi$. Then $\mathcal{M}, t=\varphi$ and even $\mathcal{M}, t=C_{A} \varphi$ for all t with $s R_{A}^{*} t$. The

Introduction
Syntax
Semantics
Revelations
Principles

Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati- R_{A}^{*}-reachable submodels of $\left.\mathcal{M}\right|_{C_{A} \varphi}=\left.\mathcal{M}\right|_{\varphi}$ are identical. Hence $\mathcal{M}\left|C_{A} \varphi, s\right|=C_{A} \varphi$, i. e., $\mathcal{M}, s \mid=\left[C_{A} \varphi\right] C_{A} \varphi$.

Unsuccessful Updates

Introduction
Syntax
Question: What if $B \subsetneq A$? Is [$\left.C_{B} \varphi\right] C_{B} \varphi$ still valid?
Answer: It is not!

Counterexample: Recall the example from earlier that showed that $\left[p \wedge \neg K_{b} p\right]\left(p \wedge \neg K_{b} p\right)$ is not valid. Let $B=\{a\}$. Now consider the update formula $\left[C_{B}\left(p \wedge \neg K_{b} p\right)\right] C_{B}\left(p \wedge \neg K_{b} p\right)$. This is not valid, obviously.

Unsuccessful Updates

Back to the previous positive result (public knowledge updates are successful): Let us try to generalize the idea of preservation of truth under submodels.

Definition
The language $\mathcal{L}_{K C[]}^{0}$ is the following fragment of $\mathcal{L}_{K C[]}$:

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| K_{a} \varphi\left|C_{B} \varphi\right|[\neg \varphi] \varphi .
$$

Definition

A formula φ is preserved under submodels iff, for all (\mathcal{M}, s)

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati- and all submodels \mathcal{M}^{\prime} of \mathcal{M} with $s \in \mathcal{D}\left(\mathcal{M}^{\prime}\right)$, if $\mathcal{M}, s=\varphi$, then also $\mathcal{M}^{\prime}, s \neq \varphi$.

Unsuccessful Updates

Proposition (Preservation)
Fragment $\mathcal{L}_{K C[]}^{0}$ is preserved under submodels.

Proof.

By structural induction.

Introduction

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-

Example
Summary

Unsuccessful Updates

Introduction

Proof (ctd.)

- Inductive case $\varphi \vee \psi$: Similar.
- Inductive case $K_{a} \varphi$: Let $\mathcal{M}=(S, R, V)$ be given and $\mathcal{M}^{\prime}=\left(S^{\prime}, R^{\prime}, V^{\prime}\right)$ a submodel of \mathcal{M}. Let $s \in S^{\prime}$. Suppose $\mathcal{M}, s \equiv K_{a} \varphi$. Let $s^{\prime} \in S^{\prime}$ and $s R_{a}^{\prime} s^{\prime}$. Then $\mathcal{M}, s^{\prime}=\varphi$. By induction hypothesis, $\mathcal{M}^{\prime}, s^{\prime} \vDash \varphi$. Therefore $\mathcal{M}^{\prime}, s \neq K_{a} \varphi$.
- Inductive case $C_{B} \varphi$: Similar.

Unsuccessful Updates

Proof (ctd.)

■ Inductive case $[\neg \varphi] \psi$: Suppose $\mathcal{M}, s \vDash[\neg \varphi] \psi$ and suppose for contradiction that $\mathcal{M}^{\prime}, s \not \vDash[\neg \varphi] \psi$. This implies $\mathcal{M}^{\prime}, s \mid=\neg \varphi$ and $\left.\mathcal{M}^{\prime}\right|_{\neg \varphi}, s \not \vDash \psi$. Using the contrapositive of the induction hypothesis, we arrive at $\mathcal{M}, s \vDash \neg \varphi$. Moreover $\left.\mathcal{M}^{\prime}\right|_{\neg \varphi}$ is a submodel of $\left.\mathcal{M}\right|_{\neg \varphi}$, because $t \in S^{\prime}$ only survives if $\mathcal{M}^{\prime}, t \equiv \neg \varphi$. Again by induction hypothesis, $\mathcal{M}, t \vDash \neg \varphi$, so $\llbracket \neg \varphi \rrbracket_{\mathcal{M}^{\prime}} \subseteq \llbracket \neg \varphi \rrbracket_{\mathcal{M}}$. But from $\mathcal{M}, s \vDash[\neg \varphi] \psi$ and $\mathcal{M}, s \vDash \neg \varphi$ it follows that $\left.\mathcal{M}\right|_{\neg \varphi, s} \vDash \psi$, therefore, by induction hypothesis, $\left.\mathcal{M}^{\prime}\right|_{\neg \varphi}, s \neq \psi$, which is a contradiction.

Introduction
Syntax
Semantics

Revelations
Principles

Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation

Example
Summary

Homework: What about formulas of the form $\hat{K}_{a} \varphi$, or $[\varphi] \psi$?
Are they also preserved under submodels? If not, why not?
Counterexamples?

Unsuccessful Updates

Introduction

Corollary
Let $\varphi \in \mathcal{L}_{K C \square}^{0}$ and $\psi \in \mathcal{L}_{K C \square]}$. Then $\varphi \rightarrow[\psi] \varphi$ is valid.

Proof.

Follows immediately from the previous proposition, since restriction to ψ-states creates a submodel.

Unsuccessful Updates

Corollary

Let $\varphi \in \mathcal{L}_{K C[]}^{0}$. Then $\varphi \rightarrow[\varphi] \varphi$ is valid.

Proof.

Previous proposition with $\psi=\varphi$.

Corollary ($\mathcal{L}_{K C[]}^{0}$ formulas are successful)
Let $\varphi \in \mathcal{L}_{K C[}^{0}$. Then $[\varphi] \varphi$ is valid.

Proof.

Previous corollary using equivalence of $\varphi \rightarrow[\varphi] \varphi$ and $[\varphi] \varphi$.

Unsuccessful Updates

Introduction
Remark: The converse does not hold, i. e., there are also formulas not in $\mathcal{L}_{K C[]}^{0}$ that are successful. Example: $\neg K_{a} p$. Or:

Proposition

Example

$p \wedge \neg p$

Introduction
Syntax

Semantics

Revelations

Axiomatisation

Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Without Common
Knowledge
With Common
Knowledge
Example
Summary

Notation:

- PA: The set of all valid $\varphi \in \mathcal{L}_{K[]}$.
- PAC: The set of all valid $\varphi \in \mathcal{L}_{K C[}$.
- PA: Axiomatization of $\mathcal{L}_{K]}$ validities (to be defined below)
- PAC: Axiomatization of $\mathcal{L}_{K C[]}$ validities (to be defined below)

Axiomatisation

PA

Axioms and inference rules for logic $\mathcal{L}_{K]}$ with $a \in A$ and $p \in P: ~ 工$

- all instantiations of propositional tautologies (Taut.)

■ $K_{a}(\varphi \rightarrow \psi) \rightarrow\left(K_{a} \varphi \rightarrow K_{a} \psi\right)$ (Distribution of K_{a} over \rightarrow)

- $K_{a} \varphi \rightarrow \varphi$ (Truth)
- $K_{a} \varphi \rightarrow K_{a} K_{a} \varphi$ (Positive introspection)
- $\neg K_{a} \varphi \rightarrow K_{a} \neg K_{a} \varphi$ (Negative introspection)
- [$\varphi] p \leftrightarrow(\varphi \rightarrow p)$ (Atomic permanence)
$\square[\varphi] \neg \psi \leftrightarrow(\varphi \rightarrow \neg[\varphi] \psi)$ (Announcement + negation)
$\square[\varphi](\psi \wedge \chi) \leftrightarrow([\varphi] \psi \wedge[\varphi] \chi)$ (Announcement + conj.)
$\square[\varphi] K_{a} \psi \leftrightarrow\left(\varphi \rightarrow K_{a}[\varphi] \psi\right)$ (Announcement + knowledge)
- $[\varphi][\psi] \chi \leftrightarrow[\varphi \wedge[\varphi] \psi] \chi$ (Composition of announcements)
- From φ and $\varphi \rightarrow \psi$, infer ψ. (Modus ponens)
- From φ, infer $K_{a} \varphi$. (Necessitation)

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess
ful
Updates
Axiomatisation
Without Common Knowledge

Axiomatisation

Note: in example derivations, we will get sloppier over time and occasionally skip steps, especially those that involve purely propositional reasoning. Hence, the given derivations may not be derivations in the formal sense, strictly speaking, but it should always be clear how to fill in the missing details/steps.

Axiomatisation

Example

We want to show that $\vdash[p] K_{a} p$:
$1 p \rightarrow p$ (prop. taut.)
$2[p] p \leftrightarrow(p \rightarrow p)$ (atomic permanence)
3 [$p] p$ (1, 2, another prop. tautology, MP)
$4 K_{a}[p] p$ (3, necessitation)
$5 p \rightarrow K_{a}[p] p$ (4, prop. taut.)
6 [$p] K_{a} p \leftrightarrow\left(p \rightarrow K_{a}[p] p\right)$ (announcements + knowledge)
$7[p] K_{a} p$ (5, 6, prop. taut.)

Revelations
Principles
Common
Knowledge
Unsuccess-

Axiomatisation

The axiomatisation PA of PA is sound and complete.

Note:

- We already showed that the axioms involving announcements are sound.

Axiomatisation

PAC

Axioms and inference rules for logic $\mathcal{L}_{K C]}(B \subseteq A)$:

- all axioms and inference rules of $\mathcal{L}_{K]}$
- $C_{B}(\varphi \rightarrow \psi) \rightarrow\left(C_{B} \varphi \rightarrow C_{B} \psi\right)$ (Distribution of C_{B} over \rightarrow)
- $C_{B} \varphi \rightarrow\left(\varphi \wedge E_{B} C_{B} \varphi\right)$ (Mix)
$\square C_{B}\left(\varphi \rightarrow E_{B} \varphi\right) \rightarrow\left(\varphi \rightarrow C_{B} \varphi\right)$
(Induction of common knowledge)
\square From φ, infer $C_{B} \varphi$.
(Neccessitation of common knowledge)
■ From φ, infer $[\psi] \varphi$. (Neccessitation of announcements)
■ From $\chi \rightarrow[\varphi] \psi$ and $\chi \wedge \varphi \rightarrow E_{B} \chi$, infer $\chi \rightarrow[\varphi] C_{B} \psi$.
(Mix of announcements and common knowledge)

Introduction
Syntax
Semantics
Revelations
Principles

Common
Knowledge
Unsuccess-

Updates
Axiomatisati on
Without Common Knowledge

Axiomatisation

PAC

The axiomatisation PAC of PAC is sound and complete.

Note:

- We already showed soundness for (most of) the additional rules and axioms.

Axiomatisation

 PAC
Example

We show that $\vdash[\neg \mathrm{p}] C_{A} \neg \mathrm{p}$:
$1 \neg p \rightarrow \neg(\neg p \rightarrow p) \quad$ (prop. taut.)
$2[\neg p] p \leftrightarrow(\neg p \rightarrow p) \quad$ (atomic permanence)
B $\neg p \rightarrow \neg[\neg p] p \quad$ (1, 2, prop. taut.)
$4[\neg p] \neg p \leftrightarrow(\neg p \rightarrow \neg[\neg p] p)$ (announcements + negation)
5 [$\neg p] \neg p$ (3, 4, prop. taut.)
6 $T \rightarrow[\neg p] \neg p \quad$ (5, prop. taut.)
$7 \top$ (prop. taut.)
${ }_{8} K_{a} \top$ (7, necessitation)
9 $\top \wedge \neg p \rightarrow K_{a} \top$ (8, prop. taut.)
$10 \top \wedge \neg p \rightarrow E_{A} \top \quad$ (9, for all $a \in A$, prop. taut.)
$11 \top \rightarrow[\neg p] C_{A} \neg p \quad(10,6$, ann. + common knowledge)
$12[\neg p] C_{A} \neg p$ (11, prop. taut.)

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisation
Without Common Knowledge

3

Introduction
Syntax
Semantics
Revelations

Example: Muddy Children

Muddy Children

Example (Muddy children)

- There are n children. Some of them have a muddy forehead.
- They only see whether the other children are muddy, not themselves.
- They are perfect reasoners/logicians.
- Their father says (repeatedly): "At least one of you is muddy. Those of you who know whether they are muddy please raise your hand."

Introduction
Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
ful
Updates
Axiomatisati-
on
Example
Summary

Announcements: Raising hands or not.

Muddy Children

Introduction
We look at example with three children (a, b, and c), where a and b are muddy, while c not, i. e., $m_{a} \wedge m_{b} \wedge \neg m_{c}$.

Some abbreviations:

$$
\text { muddy }=m_{a} \vee m_{b} \vee m_{c}
$$

knowmuddy $\left.=\left(K_{a} m_{a} \vee K_{a} \neg m_{a}\right) \vee\left(K_{b} m_{b} \vee K_{b} \neg m_{b}\right) \vee\left(K_{c} m_{c} \vee K_{c} \neg m_{c}\right)\right)^{\text {aates }}$ abknowmuddy $=\left(K_{a} m_{a} \vee K_{a} \neg m_{a}\right) \wedge\left(K_{b} m_{b} \vee K_{b} \neg m_{b}\right)$.

Muddy Children

Model Cube ${ }^{\prime \prime \prime}=$ Cube $\left.^{\prime \prime}\right|_{\text {abknowmuddy }}$ (after a and b raise their hands):
Introduction

Syntax
Semantics
Revelations
Principles
Common
Knowledge
Unsuccess-
Updates
Axiomatisation

Example
Summary

Cube ${ }^{\prime \prime \prime}, 110$ = knowmuddy
Cube ${ }^{\prime \prime \prime}, 110=C_{a b c}\left(m_{a} \wedge m_{b} \wedge \neg m_{c}\right)$

Introduction
Syntax

- Public announcements change knowledge state.
- Semantics: via submodels
- Without common knowledge: $\mathcal{L}_{K[]}$ can be reduced to \mathcal{L}_{K}.
- With common knowledge: not.
- Announcements can be successful or unsuccessful. Preserved formulas are successful
- Sound and complete axiomatizations exist.

