Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser Summer Term 2017

Course outline

- Introduction
- 2 Agent-Based Simulation
- Agent Architectures
- 4 Beliefs, Desires, Intentions
- Norms and Duties
- 6 Communication and Argumentation
- 7 Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Last time

Distributed Constraint Satisfaction as a means to implement distributed problem solving: Each agent tries to assign some value to its private variable under consideration of its known constraints and on the feedback it receives from the other agents.

Today

Agents display selfishness, i.e., they have preferences (of probably different strengths) and compete with each other about rare goods. We will employ the metaphors of Auctions and Markets.

Auctions: Basic Terminology

- A seller is auctioning one item to a set of bidders.
- Each bidder has an intrinsic value (or true value) for the item.

- Bidders have independent, private values, i.e., agents are uncertain about the other agents' intrinsic values.
- Sellers do not have a good estimate of the bidders' true value of an item.

- Sellers want to maximize the price at which the good is allocated: "Which type of auction should I set up for my good?"
- Bidders want to minimize the price at which the good is allocated: "Which price should I bid?"

Examples

- Ascending-bid auctions (English auction)
- Descending-bid auction (Dutch auction)
- First-price sealed-bid auctions
- Second-price sealed-bid auctions (Vickrey auctions)
- and there are many more.

Dimensions

- Bidding rules: How are offers made?
- Clearing rules: When do which trades occur as a function of the bidding?
- Information rules: Who knows what when about the state of the auction?

Examples

- Ascending-bid auctions (English auction)
- Descending-bid auction (Dutch auction)
- First-price sealed-bid auctions
- Second-price sealed-bid auctions (Vickrey auctions)
- and there are many more.

Dimensions

- Bidding rules: How are offers made?
- Clearing rules: When do which trades occur as a function of the bidding?
- Information rules: Who knows what when about the state of the auction?

- Bidding rule: Auctioneer starts off by an initial price for the good. Agents are invited to bid more.
- Clearing rule: No agent is willing to raise current bid, and the highest bidder wins.
- Information rule: Every agent can see what the others are bidding.

- Bidding rule: Auctioneer starts off by an initial price for the good. Auctioneer continually lowers the offer price.
- Clearing rule: An agent makes a bid for the good which is equal to the current offer price.
- Information rule: Every agent can see what the others are bidding.

- Bidding rule: Bidders submit to the auctioneer a bid for the good.
- Clearing rule: Winner is the agent who made highest bid. Winner pays the price (s)he bid.
- Information rule: No agent can see what the others are bidding.

- Bidding rule: Bidders submit to the auctioneer a bid for the good.
- Clearing rule: Winner is the agent who made highest bid. Winner pays the second-highest price bid.
- Information rule: No agent can see what the others are bidding.

Discussion

- Which auction protocol would you prefer as a bidder?
- Which auction protocol would you prefer as a auctioneer?

- Descending-bid auctions correspond to First-price sealed-bid auctions.
- Ascending-bid auctions correspond to Second-price sealed-bid auctions.
- In Second-price sealed-bid auctions bidding one's true value is a dominant strategy.
- In First-price sealed-bid auctions $s(v_i) = (\frac{n-1}{n})v_i$ is an equilibrium strategy.
- The money the seller can expect from a First-price sealed-bid auction is the same it can expect from a Second-price sealed-bid auction.

Proposition

Descending-bid auctions correspond to First-price sealed-bid auctions.

- Consider a descending-bid auction:
- Seller is lowering the price from its high initial starting point.
- No bidder says anything until finally s.o. accepts the bid and pays the current price.
- For bidder i, there's a first price b_i (s)he accepts.
- The price b_i plays the role of bidder i's bid in a first-price sealed-bid auction.

Proposition

Ascending-bid auctions correspond to Second-price sealed-bid auctions.

- Consider an ascending-bid auction.
- The seller steadily raises the price and bidders gradually drop out.
- The winner of the auction is the last bidder remaining, and (s)he pays the price at which the second-to-last bidder dropped out.

- Ascending-bid auctions correspond to Second-price sealed-bid auctions.
- In Second-price sealed-bid auctions bidding one's true value is a dominant strategy.
- In First-price sealed-bid auctions $s(v_i) = (\frac{n-1}{n})v_i$ is an equilibrium strategy.
- The money the seller can expect from a First-price sealed-bid auction is the same it can expect from a Second-price sealed-bid auction.

- Set of players $\mathcal{N} = \{1, 2, ..., n\}$ (the bidders)
- The true value v_i of player i for the item
- Strategy $s(v_i) = b_i$ is the bid of player i as a function of v_i
- Payoff: If b_i is not the winning bid, then the payoff to i is 0. If b_i is the winning bid, and some other b_j is the second-place bid, then the payoff to i is $g(v_i) = v_i b_j$.

Proposition

In a second-price sealed-bid auction, it is a dominant strategy (i.e., best strategy regardless of what strategy everyone else is using) for each bidder i to choose a bid $b_i = v_i$.

Dominant strategy for second-price sealed-bid auctions: Proof

- Case i's valuation v_i is larger than the highest of the other bidders' bids.
 - If i bids v_i it wins and pays the next-highest bid amount
 - \blacksquare If *i* bids more than v_i , *i* would still win and pay the same
 - If *i* bids less than v_i , it either still wins and pays the same, or it looses and receives zero payoff.
- \blacksquare Case *i*'s valuation v_i smaller than the highest of the other bidders' bids.
 - If *i* bids v_i , it looses and gains zero payoff.
 - If i bids more than v, i either looses and gains zero payoff or wins and gains zero (or less) payoff.
 - \blacksquare If *i* bid less than *v*, it still looses and gains zero payoff

Dominant strategy for second-price sealed-bid auctions: Proof

- Case i's valuation v_i is larger than the highest of the other bidders' bids.
 - \blacksquare If *i* bids v_i it wins and pays the next-highest bid amount.
 - If *i* bids more than v_i , *i* would still win and pay the same.
 - If i bids less than vi, it either still wins and pays the same, or it looses and receives zero payoff.
- \blacksquare Case *i*'s valuation v_i smaller than the highest of the other bidders' bids.
 - If *i* bids v_i , it looses and gains zero payoff
 - If i bids more than v, i either looses and gains zero payoff or wins and gains zero (or less) payoff.
 - \blacksquare If i bid less than v, it still looses and gains zero payoff.

Dominant strategy for second-price sealed-bid auctions: Proof

- Case i's valuation v_i is larger than the highest of the other bidders' bids.
 - \blacksquare If *i* bids v_i it wins and pays the next-highest bid amount.
 - If *i* bids more than v_i , *i* would still win and pay the same.
 - If i bids less than vi, it either still wins and pays the same, or it looses and receives zero payoff.
- Case i's valuation v_i smaller than the highest of the other bidders' bids.
 - If *i* bids v_i , it looses and gains zero payoff.
 - If i bids more than v, i either looses and gains zero payoff or wins and gains zero (or less) payoff.
 - If i bid less than v, it still looses and gains zero payoff.

- Descending-bid auctions correspond to First-price sealed-bid auctions.
- Ascending-bid auctions correspond to Second-price sealed-bid auctions.
- In Second-price sealed-bid auctions bidding one's true value is a dominant strategy.
- In First-price sealed-bid auctions $s(v_i) = (\frac{n-1}{n})v_i$ is an equilibrium strategy.
- The money the seller can expect from a First-price sealed-bid auction is the same it can expect from a Second-price sealed-bid auction.

Equilibrium in First-Price sealed-bid Auctions: Two Bidders

Assumptions

- Common knowledge between two bidders: v₁, v₂ are independently and uniformly distributed between 0 and 1.
- Both bidders use the same strategy $s(\cdot)$
- $s(\cdot)$ is strictly increasing and differential (so, if two bidders have different values, then they will bid differently).
- $s(v) \le v$ for all v, s(0) = 0

Sample Strategies

- s(v) = v: bid your true valuation
- s(v) = cv, c < 1: scale down your bid a bit
- ...

Equilibrium in First-Price sealed-bid Auctions: Two Bidders

Observations

- If bidder i has a true value of v_i (drawn from [0, 1]), the probability that i wins is v_i
- If bidder *i* wins, it receives the payoff $v_i s(v_i)$
- Thus, the expected payoff for bidder *i* is

$$g(v_i) = v_i(v_i - s(v_i))$$

Note that $s(v_i) = v_i$ is not a dominant strategy in first-price auctions: If i loses, it gets 0 payoff, and if i wins, the payoff is $(v_i - v_i) = 0$, too.

Equilibrium strategy

- For $s(\cdot)$ to be an equilibrium strategy means that for each bidder i, there is no incentive to deviate from strategy $s(\cdot)$ if its competitor is also using strategy $s(\cdot)$.
- The incentive to deviate can be simulated by pretending other deviations v from v_i .
- Formally: The expected payoff $g(v) = v(v_i s(v))$ should be maximal for $v = v_i$.

Equilibrium strategy

- We set $g'(v) = v_i s(v) vs'(v) = 0$, and ask for $s(\cdot)$.
- $s'(v) = \frac{v_i s(v)}{v_i}$
- $s'(v_i) = 1 \frac{s(v_i)}{v_i}$
- $s(v_i) = v_i/2$ solves this differential equation.

Equilibrium in First-Price sealed-bid Auctions: n Bidders

Equilibrium strategy

Expected payoff for bidder i

$$G(v_i) = v_i^{n-1}(v_i - s(v_i))$$

■ Setting $G'(v_i) = 0$, we have

$$(n-1)v^{n-2}v_i - (n-1)v^{n-2}s(v_i) - v_i^{n-1}s'(v_i) = 0$$

- Then we obtain $s'(v_i) = (n-1)(1 \frac{s(v_i)}{v_i})$
- This differential equation is solved by

$$s(v_i) = \left(\frac{n-1}{n}\right)v_i$$

- Descending-bid auctions correspond to First-price sealed-bid auctions.
- Ascending-bid auctions correspond to Second-price sealed-bid auctions.
- In Second-price sealed-bid auctions bidding one's true value is a dominant strategy.
- In First-price sealed-bid auctions $s(v_i) = (\frac{n-1}{n})v_i$ is an equilibrium strategy.
- The money the seller can expect from a First-price sealed-bid auction is the same it can expect from a Second-price sealed-bid auction.

The seller's perspective

Which auction type should the seller choose to get as much money as possible?

From what we know so far

- Two competing forces
 - Second-price sealed-bid auction: Seller charges second-highest bid
 - First-price sealed-bid auction: Bidders reduce their bids

The seller's perspective

Which auction type should the seller choose to get as much money as possible?

From what we know so far

- Two competing forces
 - Second-price sealed-bid auction: Seller charges second-highest bid
 - First-price sealed-bid auction: Bidders reduce their bids

Seller Revenue

Proposition

Suppose *n* numbers are drawn independently from the uniform distribution on the interval [0,1] and then sorted from smallest to largest. The expected value of the number in the *k*th position on this list is $\frac{k}{n+1}$.

Application to Second-price Auctions

The seller gets the second-highest value, i.e., at position n-1. Thus the expected value is $\frac{n-1}{n+1}$.

Application to First-price Auctions

The winning bidder bids $\frac{(n-1)}{n}v_i$ (Equilibrium strategy). Using the propositon, $v_i = \frac{n}{n+1}$. Hence $\frac{(n-1)}{n}\frac{n}{n+1} = \frac{n-1}{n+1}$

Seller Revenue

Proposition

Suppose *n* numbers are drawn independently from the uniform distribution on the interval [0,1] and then sorted from smallest to largest. The expected value of the number in the *k*th position on this list is $\frac{k}{n+1}$.

Application to Second-price Auctions

The seller gets the second-highest value, i.e., at position n-1. Thus the expected value is $\frac{n-1}{n+1}$.

Application to First-price Auctions

The winning bidder bids $\frac{(n-1)}{n}v_i$ (Equilibrium strategy). Using the propositon, $v_i = \frac{n}{n+1}$. Hence $\frac{(n-1)}{n}\frac{n}{n+1} = \frac{n-1}{n+1}$

Seller Revenue

Proposition

Suppose *n* numbers are drawn independently from the uniform distribution on the interval [0,1] and then sorted from smallest to largest. The expected value of the number in the *k*th position on this list is $\frac{k}{n+1}$.

Application to Second-price Auctions

The seller gets the second-highest value, i.e., at position n-1. Thus the expected value is $\frac{n-1}{n+1}$.

Application to First-price Auctions

The winning bidder bids $\frac{(n-1)}{n}v_i$ (Equilibrium strategy). Using the propositon, $v_i = \frac{n}{n+1}$. Hence $\frac{(n-1)}{n}\frac{n}{n+1} = \frac{n-1}{n+1}$

- Descending-bid auctions correspond to First-price sealed-bid auctions.
- Ascending-bid auctions correspond to Second-price sealed-bid auctions.
- In Second-price sealed-bid auctions bidding one's true value is a dominant strategy.
- In First-price sealed-bid auctions $s(v_i) = (\frac{n-1}{n})v_i$ is an equilibrium strategy.
- The money the seller can expect from a First-price sealed-bid auctions is the same it can expect from a Second-price sealed-bid auctions.

Discussion

Application to ressource assignment: Is it wise to just sequentially run auctions to assign several items to several agents?

10, 9

b

2 5, 0

Matching markets generalize this setting to many items and many bidders.

Matching Markets

- Origin: Economics, operation research
- Agents have different preferences for different kinds of goods
- Prices determine the allocation of goods . . .
- ...and socially optimal allocations emerge.

Agenda

- Bipartite graphs, paths, and matchings
- Market Framework
- 3 Algorithm for computing market-clearing prices

Definition

A graph G = (V, E) is a bipartite graph iff there are two disjoint sets $A, B \subseteq V, A \cup B = V$ such that every edge $e \in E$ connects a vertex in A to one in B.

G is balanced iff |A| = |B|.

Matching

Given a graph G = (V, E), a matching $M \subseteq E$ in G is a set of edges such that no two edges share a common vertex.

Maximum matching

A matching is a maximum matching iff it contains the largest possible number of edges.

Perfect matching

A perfect matching in a balanced bipartite graph $G = (A \cup B, E)$ is a set of edges between nodes in A and nodes in B such that each node is endpoint of exactly one edge.

Free Vertex

A vertex $v \in V$ is a free vertex w.r.t. to a matching M iff no edge from M is incident to v.

Path

A path $P \subseteq E$ in a graph G = (V, E) is a sequence of edges which connect a sequence of distinct vertices.

Alternating Path

P is an alternating path w.r.t. M, iff P is a path in G and for every two subsequent edges on P it holds that one is in M and the other is not.

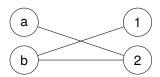
Augmenting Path

An alternating path *P* is an augmenting path iff its start and end vertices are free.

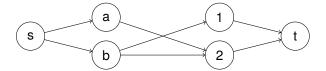
Maximum matching on bipartite graph


```
function Maximum-Matching(G)
   M = \emptyset
   repeat
       P = Augmenting-Path(M, G)
       M = M \otimes P [Symmetric difference, A \otimes B = \{x | x \in A \oplus x \in B\}]
   until P = \emptyset
end function
function Augmenting-Path(M, G)
    Direct unmatched edges A \rightarrow B, matched B \rightarrow A
    Add vertices s, t, connect s to free vertices in A and the
free vertices of B to t
    Run BFS to find a shortest path P from s to t
   return P \setminus \{s,t\}
end function
```

Example: Compute maximum matching

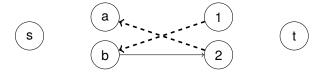


Example: Compute maximum matching II



Example: Compute maximum matching III

Example: Compute maximum matching IV



If the graph has a perfect matching, a component can solve the allocation problem using the maximum-matching algorithm in a centralized way.

Agenda

- Bipartite graphs, paths, and matchings
- 2 Market Framework
- Algorithm for computing market-clearing prices

- \blacksquare Set \mathcal{S} of Sellers (each with an object to sell)
- \blacksquare Set $\mathcal B$ of Buyers (each with valuation for each object)
- \mathbf{v}_{ij} : Valuation of buyer j for the object held by seller i
- p_i : Price fixed by seller *i*
- $\mathbf{v}_{ij} p_i$: Buyer j's payoff if he/she/it buys from seller i
- Note: If $v_{ij} p_i$ is negative for some j and all i then j does no transaction and receives payoff 0.

Definition: Preferred sellers

The set of sellers that maximize *j*'s payoff is called preferred sellers of buyer *j* (provided the payoffs are non-negative).

Definition: Preferred seller graph

The preferred seller graph (PSG) is the bipartite graph $G = (S \cup B, E)$ s.th. $(i,j) \in E$ iff i is a preferred seller of j.

Definition: Market-clearing prices

A set of prices is called market clearing iff the resulting preferred-seller graph has a perfect matching.

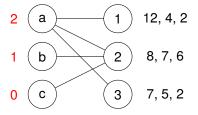
Given a balanced bipartite graph $G = (S \cup B, E)$. For any sets of nodes $X \subseteq B$ (resp. S) a node $v \in S$ (resp. B) is a neighbor of X iff it has an edge to some node in B.

The neighbor set of \mathcal{B} , $\mathcal{N}(\mathcal{B})$, is the set of all neighbors of \mathcal{B} .

Definition: Constricted Set

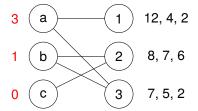
A set \mathcal{B} is a constricted set iff $|\mathcal{B}| > |\mathcal{N}(\mathcal{B})|$.

The effect of prices on PSG: Illustrations I



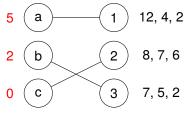
- Does the graph have a constricted set?
- Is there a perfect matching?
- Are the prices market clearing?

The effect of prices on PSG: Illustrations II



- PSG has perfect matching ⇒prices clear the market.
- Some cooperation needed among sellers (or use the previously introduced centralized algorithm)
- Do the agents as a whole get what they want most?

The effect of prices on PSG: Illustrations III



- Higher prices do not improve the allocation.
- Payoff: the sellers' gain = the buyers' loss.

Theorem (see [2])

A preferred seller graph has a perfect matching iff it contains no constricted set.

Market-Clearing Prices: Optimality

Theorem (see [2])

Given a set of market-clearing prices. A perfect matching in the resulting preferred-seller graph has the maximum total valuation.

Proof

- Consider a set of market-clearing prices MCP, and let M be a perfect matching in the PSG
- Total payoff of buyers = Total Valuation Sum of all prices
- Since each buyer individually maximizes her payoff (PSG!), the total payoff of buyers is maximal, i.e., no other matching yields more payoff than M under the given MCP.
- The sum of prices is the same for all matchings ⇒Matchings that maximize total payoff also maximizes total valuation.

Theorem (see [2])

Given a set of market-clearing prices. A perfect matching in the resulting preferred-seller graph produces the maximum possible sum of payoffs to all sellers and buyers.

Very similar argument.

Agenda

- Bipartite graphs, paths, and matchings
- Market Framework
- 3 Algorithm for computing market-clearing prices

Theorem

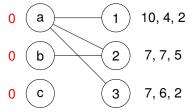
For any set of buyer valuations, there exists a set of market-clearing prices.

Let's construct a algorithm for searching for a set of market-clearing prices.

Algorithm (see [2])

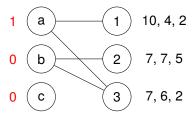
- All sellers initially set prices to 0
- Construct preferred-seller graph PSG
- If PSG has a perfect matching, it's done
- \blacksquare Else there must be a constricted set of buyers ${\cal B}$
- 1 The neighbors N(B) raise their prices by one unit
- 6 Scale prices s.th. the minimum price is 0
- Goto 2
- This algorithm terminates ⇔ it finds a set of prices that yield a PSG with a perfect matching ⇔ (by definition) it finds a set of market-clearing prices.
- Will it terminate?

Example execution I

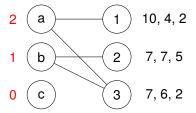


Note: In this case there are two constricted sets $\{1,3\}$ and $\{1,2,3\}$. Either of them can be chosen.

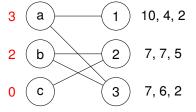
Example execution II



Example execution III



Example execution IV



Perfect matching: (1,a),(2,c),(3,b)

Definition: Potentials of buyers, sellers, and of the auction

The potential of a buyer is the maximum payoff she can currently get from any seller. The potential of a seller is the current price she is charging. The potential energy of the auction is the sum of the potential of all buyers and sellers.

Note: The minimum payoff of a buyer (its potential) is 0. The minimum price a seller can charge (its potential) is 0. Thus, the potential energy of the auction must be greater or equal to 0.

Market-Clearing Prices: Termination

Theorem (see [2])

The procedure always terminates.

Proof

- Initially, all sellers have potential 0 and buyers have potential according to their highest valuation. Thus, at the start $P_0 \ge 0$.
- In every round, when sellers in $N(\mathcal{B})$ (\mathcal{B} constricted set) raise their prices, each of these sellers' potential increases and the potential of buyers in \mathcal{B} decreases.
- Since $|\mathcal{B}| > |\mathcal{N}(\mathcal{B})|$, the overall potential decreases.
- Because the potential cannot drop below 0, the procedure will terminate.

Single-item auction as special case

a

(1) 3, 0, 0

ig(b ig)

(2) 2, 0, 0

(c)

- (3) 1, 0, 0
- Item *a* is the single item, the other items are dummies (to have a balanced bipartite graph)
- Item *a* increases its price until only one is left.
- Finally, 1 gets assigned to *a* and he/she/it must pay 2.
- Proposition: Market-Clearing Prices auction implements
 English auction (second-price sealed-bid auction).

Course outline

- Introduction
- 2 Agent-Based Simulation
- Agent Architectures
- 4 Beliefs, Desires, Intentions
- Norms and Duties
- 6 Communication and Argumentation
- 7 Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Literature I

M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.

D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Connected World, Cambridge University Press, 2010.