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Recap & Outlook

Last time
Distributed Constraint Satisfaction as a means to implement
distributed problem solving: Each agent tries to assign
some value to its private variable under consideration of its
known constraints and on the feedback it receives from the
other agents.

Today
Agents display selfishness, i.e., they have preferences (of
probably different strengths) and compete with each other
about rare goods. We will employ the metaphors of Auctions
and Markets.
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Auctions: Basic Terminology

A seller is auctioning one item to a set of bidders.
Each bidder has an intrinsic value (or true value) for the
item.
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Auctions: Basic Assumptions

Bidders have independent, private values, i.e., agents are
uncertain about the other agents’ intrinsic values.
Sellers do not have a good estimate of the bidders’ true
value of an item.
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Opposing Goals

Sellers want to maximize the price at which the good is
allocated: “Which type of auction should I set up for my
good?”
Bidders want to minimize the price at which the good is
allocated: “Which price should I bid?”
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Auctions: Types

Examples
Ascending-bid auctions (English auction)
Descending-bid auction (Dutch auction)
First-price sealed-bid auctions
Second-price sealed-bid auctions (Vickrey auctions)
and there are many more.

Dimensions
Bidding rules: How are offers made?
Clearing rules: When do which trades occur as a function of
the bidding?
Information rules: Who knows what when about the state of
the auction?
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English auction

Bidding rule: Auctioneer starts off by an initial price for the
good. Agents are invited to bid more.
Clearing rule: No agent is willing to raise current bid, and
the highest bidder wins.
Information rule: Every agent can see what the others are
bidding.
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Dutch auction

Bidding rule: Auctioneer starts off by an initial price for the
good. Auctioneer continually lowers the offer price.
Clearing rule: An agent makes a bid for the good which is
equal to the current offer price.
Information rule: Every agent can see what the others are
bidding.
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First-price sealed-bid auction

Bidding rule: Bidders submit to the auctioneer a bid for the
good.
Clearing rule: Winner is the agent who made highest bid.
Winner pays the price (s)he bid.
Information rule: No agent can see what the others are
bidding.
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Second-price sealed-bid auction

Bidding rule: Bidders submit to the auctioneer a bid for the
good.
Clearing rule: Winner is the agent who made highest bid.
Winner pays the second-highest price bid.
Information rule: No agent can see what the others are
bidding.
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Discussion

Which auction protocol would you prefer as a bidder?
Which auction protocol would you prefer as a auctioneer?
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Outline of interesting results

1 Descending-bid auctions correspond to First-price
sealed-bid auctions.

2 Ascending-bid auctions correspond to Second-price
sealed-bid auctions.

3 In Second-price sealed-bid auctions bidding one’s true
value is a dominant strategy.

4 In First-price sealed-bid auctions s(vi) = (n−1
n )vi is an

equilibrium strategy.
5 The money the seller can expect from a First-price

sealed-bid auction is the same it can expect from a
Second-price sealed-bid auction.
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Correspondence I

Proposition
Descending-bid auctions correspond to First-price sealed-bid
auctions.

Proof
Consider a descending-bid auction:
Seller is lowering the price from its high initial starting point.
No bidder says anything until finally s.o. accepts the bid and
pays the current price.
For bidder i, there’s a first price bi (s)he accepts.
The price bi plays the role of bidder i ’s bid in a first-price
sealed-bid auction.
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Correspondence II

Proposition
Ascending-bid auctions correspond to Second-price sealed-bid
auctions.

Proof
Consider an ascending-bid auction.
The seller steadily raises the price and bidders gradually
drop out.
The winner of the auction is the last bidder remaining, and
(s)he pays the price at which the second-to-last bidder
dropped out.
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Outline of interesting results

1 Descending-bid auctions correspond to First-price
sealed-bid auctions.

2 Ascending-bid auctions correspond to Second-price
sealed-bid auctions.

3 In Second-price sealed-bid auctions bidding one’s true
value is a dominant strategy.

4 In First-price sealed-bid auctions s(vi) = (n−1
n )vi is an

equilibrium strategy.
5 The money the seller can expect from a First-price

sealed-bid auction is the same it can expect from a
Second-price sealed-bid auction.
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Second-price sealed-bid auctions as games:
Basics

Set of players N = {1,2, . . . ,n} (the bidders)
The true value vi of player i for the item
Strategy s(vi) = bi is the bid of player i as a function of vi

Payoff: If bi is not the winning bid, then the payoff to i is 0. If
bi is the winning bid, and some other bj is the second-place
bid, then the payoff to i is g(vi) = vi−bj .
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Dominant strategy for second-price
sealed-bid auctions

Proposition
In a second-price sealed-bid auction, it is a dominant strategy
(i.e., best strategy regardless of what strategy everyone else is
using) for each bidder i to choose a bid bi = vi .
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Dominant strategy for second-price
sealed-bid auctions: Proof

Proof
Case i ’s valuation vi is larger than the highest of the other
bidders’ bids.

If i bids vi it wins and pays the next-highest bid amount.
If i bids more than vi , i would still win and pay the same.
If i bids less than vi , it either still wins and pays the same, or
it looses and receives zero payoff.

Case i ’s valuation vi smaller than the highest of the other
bidders’ bids.

If i bids vi , it looses and gains zero payoff.
If i bids more than v, i either looses and gains zero payoff or
wins and gains zero (or less) payoff.
If i bid less than v, it still looses and gains zero payoff.
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Outline of interesting results

1 Descending-bid auctions correspond to First-price
sealed-bid auctions.

2 Ascending-bid auctions correspond to Second-price
sealed-bid auctions.

3 In Second-price sealed-bid auctions bidding one’s true
value is a dominant strategy.

4 In First-price sealed-bid auctions s(vi) = (n−1
n )vi is an

equilibrium strategy.
5 The money the seller can expect from a First-price

sealed-bid auction is the same it can expect from a
Second-price sealed-bid auction.
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Equilibrium in First-Price sealed-bid
Auctions: Two Bidders

Assumptions
Common knowledge between two bidders: v1,v2 are
independently and uniformly distributed between 0 and 1.
Both bidders use the same strategy s(·)
s(·) is strictly increasing and differential (so, if two bidders
have different values, then they will bid differently).
s(v)≤ v for all v, s(0) = 0

Sample Strategies
s(v) = v: bid your true valuation
s(v) = cv,c < 1: scale down your bid a bit
. . .
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Equilibrium in First-Price sealed-bid
Auctions: Two Bidders

Observations
If bidder i has a true value of vi (drawn from [0, 1]), the
probability that i wins is vi

If bidder i wins, it receives the payoff vi− s(vi)

Thus, the expected payoff for bidder i is

g(vi) = vi(vi− s(vi))

Note that s(vi) = vi is not a dominant strategy in first-price
auctions: If i loses, it gets 0 payoff, and if i wins, the payoff
is (vi− vi) = 0, too.

Nebel, Lindner, Engesser – MAS 22 / 63



Equilibrium in First-Price sealed-bid
Auctions: Two Bidders

Equilibrium strategy
For s(·) to be an equilibrium strategy means that for each
bidder i, there is no incentive to deviate from strategy s(·) if
its competitor is also using strategy s(·).
The incentive to deviate can be simulated by pretending
other deviations v from vi .
Formally: The expected payoff g(v) = v(vi− s(v)) should
be maximal for v = vi .
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Equilibrium in First-Price sealed-bid
Auctions: Two Bidders

Equilibrium strategy
We set g′(v) = vi− s(v)− vs′(v) = 0, and ask for s(·).
s′(v) = vi−s(v)

v

s′(vi) = 1− s(vi)
vi

s(vi) = vi/2 solves this differential equation.
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Equilibrium in First-Price sealed-bid
Auctions: n Bidders

Equilibrium strategy
Expected payoff for bidder i

G(vi) = vn−1
i (vi− s(vi))

Setting G′(vi) = 0, we have

(n−1)vn−2vi− (n−1)vn−2s(vi)− vn−1
i s′(vi) = 0

Then we obtain s′(vi) = (n−1)(1− s(vi)
vi

)

This differential equation is solved by

s(vi) =

(
n−1

n

)
vi
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Outline of interesting results

1 Descending-bid auctions correspond to First-price
sealed-bid auctions.

2 Ascending-bid auctions correspond to Second-price
sealed-bid auctions.

3 In Second-price sealed-bid auctions bidding one’s true
value is a dominant strategy.

4 In First-price sealed-bid auctions s(vi) = (n−1
n )vi is an

equilibrium strategy.
5 The money the seller can expect from a First-price

sealed-bid auction is the same it can expect from a
Second-price sealed-bid auction.
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Seller Revenue

The seller’s perspective
Which auction type should the seller choose to get as much
money as possible?

From what we know so far
Two competing forces

Second-price sealed-bid auction: Seller charges
second-highest bid
First-price sealed-bid auction: Bidders reduce their bids

Nebel, Lindner, Engesser – MAS 27 / 63



Seller Revenue

Proposition
Suppose n numbers are drawn independently from the uniform
distribution on the interval [0,1] and then sorted from smallest to
largest. The expected value of the number in the kth position on
this list is k

n+1 .

Application to Second-price Auctions
The seller gets the second-highest value, i.e., at position n−1.
Thus the expected value is n−1

n+1 .

Application to First-price Auctions

The winning bidder bids (n−1)
n vi (Equilibrium strategy). Using the

propositon, vi =
n

n+1 . Hence
(n−1)

n
n

n+1 =
n−1
n+1
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Summary of interesting results

1 Descending-bid auctions correspond to First-price
sealed-bid auctions.

2 Ascending-bid auctions correspond to Second-price
sealed-bid auctions.

3 In Second-price sealed-bid auctions bidding one’s true
value is a dominant strategy.

4 In First-price sealed-bid auctions s(vi) = (n−1
n )vi is an

equilibrium strategy.
5 The money the seller can expect from a First-price

sealed-bid auctions is the same it can expect from a
Second-price sealed-bid auctions.
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Discussion

Application to ressource assignment: Is it wise to just
sequentially run auctions to assign several items to several
agents?

a

b

1

2

10, 9

5, 0

Matching markets generalize this setting to many items and
many bidders.
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Matching Markets

Origin: Economics, operation research
Agents have different preferences for different kinds of
goods
Prices determine the allocation of goods . . .
. . . and socially optimal allocations emerge.
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Agenda

1 Bipartite graphs, paths, and matchings
2 Market Framework
3 Algorithm for computing market-clearing prices
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Bipartite Graph

Definition
A graph G = (V ,E) is a bipartite graph iff there are two disjoint
sets A,B ⊆ V ,A∪B = V such that every edge e ∈ E connects a
vertex in A to one in B.
G is balanced iff |A|= |B|.

Nebel, Lindner, Engesser – MAS 33 / 63



Definitions: Matching

Matching
Given a graph G = (V ,E), a matching M ⊆ E in G is a set of
edges such that no two edges share a common vertex.

Maximum matching
A matching is a maximum matching iff it contains the largest
possible number of edges.

Perfect matching
A perfect matching in a balanced bipartite graph G = (A∪B,E)
is a set of edges between nodes in A and nodes in B such that
each node is endpoint of exactly one edge.
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Definition: Free Vertex

Free Vertex
A vertex v ∈ V is a free vertex w.r.t. to a matching M iff no edge
from M is incident to v.
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Definitions: Path

Path
A path P ⊆ E in a graph G = (V ,E) is a sequence of edges
which connect a sequence of distinct vertices.

Alternating Path
P is an alternating path w.r.t. M, iff P is a path in G and for every
two subsequent edges on P it holds that one is in M and the
other is not.

Augmenting Path
An alternating path P is an augmenting path iff its start and end
vertices are free.
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Maximum matching on bipartite graph

function Maximum-Matching(G)
M = /0
repeat

P = Augmenting-Path(M, G)
M = M⊗P [Symmetric difference, A⊗B = {x|x ∈ A⊕x ∈ B}]

until P = /0
end function
function Augmenting-Path(M, G)

Direct unmatched edges A→ B, matched B→ A
Add vertices s, t, connect s to free vertices in A and the

free vertices of B to t
Run BFS to find a shortest path P from s to t
return P \{s, t}

end function
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Example: Compute maximum matching

a

b

1

2
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Example: Compute maximum matching II

a

b

1

2
s t
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Example: Compute maximum matching III

a

b

1

2
s t
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Example: Compute maximum matching IV

a

b

1

2
s t

If the graph has a perfect matching, a component can solve
the allocation problem using the maximum-matching
algorithm in a centralized way.
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Agenda

1 Bipartite graphs, paths, and matchings
2 Market Framework
3 Algorithm for computing market-clearing prices
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The market framework

Set S of Sellers (each with an object to sell)
Set B of Buyers (each with valuation for each object)
vij : Valuation of buyer j for the object held by seller i
pi : Price fixed by seller i
vij−pi : Buyer j ’s payoff if he/she/it buys from seller i

Note: If vij−pi is negative for some j and all i then j does no
transaction and receives payoff 0.
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Preferred sellers and Market-clearing prices

Definition: Preferred sellers
The set of sellers that maximize j ’s payoff is called preferred
sellers of buyer j (provided the payoffs are non-negative).

Definition: Preferred seller graph
The preferred seller graph (PSG) is the bipartite graph
G = (S ∪B,E) s.th. (i, j) ∈ E iff i is a preferred seller of j.

Definition: Market-clearing prices
A set of prices is called market clearing iff the resulting
preferred-seller graph has a perfect matching.
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Neighbor Sets and Constricted Sets

Definition: Neighbor Set
Given a balanced bipartite graph G = (S ∪B,E). For any sets of
nodes X ⊆ B (resp. S) a node v ∈ S (resp. B) is a neighbor of X
iff it has an edge to some node in B.
The neighbor set of B, N(B), is the set of all neighbors of B.

Definition: Constricted Set
A set B is a constricted set iff |B|> |N(B)|.
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The effect of prices on PSG: Illustrations I

a

b

c

1

2

3

12, 4, 2

8, 7, 6

7, 5, 2

2

1

0

Does the graph have a constricted set?
Is there a perfect matching?
Are the prices market clearing?
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The effect of prices on PSG: Illustrations II

a

b

c

1

2

3

12, 4, 2

8, 7, 6

7, 5, 2

3

1

0

PSG has perfect matching⇒prices clear the market.
Some cooperation needed among sellers (or use the
previously introduced centralized algorithm)
Do the agents as a whole get what they want most?
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The effect of prices on PSG: Illustrations III

a

b

c

1

2

3

12, 4, 2

8, 7, 6

7, 5, 2

5

2

0

Higher prices do not improve the allocation.
Payoff: the sellers’ gain = the buyers’ loss.
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Matching Theorem

Theorem (see [2])
A preferred seller graph has a perfect matching iff it contains no
constricted set.
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Market-Clearing Prices: Optimality

Theorem (see [2])
Given a set of market-clearing prices. A perfect matching in the
resulting preferred-seller graph has the maximum total valuation.

Proof
Consider a set of market-clearing prices MCP, and let M be
a perfect matching in the PSG
Total payoff of buyers = Total Valuation – Sum of all prices
Since each buyer individually maximizes her payoff (PSG!),
the total payoff of buyers is maximal, i.e., no other matching
yields more payoff than M under the given MCP.
The sum of prices is the same for all matchings
⇒Matchings that maximize total payoff also maximizes total
valuation.
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Market-Clearing Prices: Optimality II

Theorem (see [2])
Given a set of market-clearing prices. A perfect matching in the
resulting preferred-seller graph produces the maximum possible
sum of payoffs to all sellers and buyers.

Very similar argument.
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Agenda

1 Bipartite graphs, paths, and matchings
2 Market Framework
3 Algorithm for computing market-clearing prices
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Market-Clearing Prices: Existence

Theorem
For any set of buyer valuations, there exists a set of
market-clearing prices.

Let’s construct a algorithm for searching for a set of
market-clearing prices.
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Market-Clearing Prices: Algorithm

Algorithm (see [2])
1 All sellers initially set prices to 0
2 Construct preferred-seller graph PSG
3 If PSG has a perfect matching, it’s done
4 Else there must be a constricted set of buyers B
5 The neighbors N(B) raise their prices by one unit
6 Scale prices s.th. the minimum price is 0
7 Goto 2

This algorithm terminates⇔ it finds a set of prices that yield
a PSG with a perfect matching⇔ (by definition) it finds a
set of market-clearing prices.
Will it terminate?
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Example execution I

a

b

c

1

2

3

10, 4, 2

7, 7, 5

7, 6, 2

0

0

0

Note: In this case there are two constricted sets {1,3} and
{1,2,3}. Either of them can be chosen.
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Example execution II

a

b

c

1

2

3

10, 4, 2

7, 7, 5

7, 6, 2

1

0

0
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Example execution III

a

b

c

1

2

3

10, 4, 2

7, 7, 5

7, 6, 2

2

1

0
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Example execution IV

a

b

c

1

2

3

10, 4, 2

7, 7, 5

7, 6, 2

3

2

0

Perfect matching: (1,a),(2,c),(3,b)
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Market-Clearing Prices: Termination

Definition: Potentials of buyers, sellers, and of the auction
The potential of a buyer is the maximum payoff she can currently
get from any seller. The potential of a seller is the current price
she is charging. The potential energy of the auction is the sum of
the potential of all buyers and sellers.

Note: The minimum payoff of a buyer (its potential) is 0. The
minimum price a seller can charge (its potential) is 0. Thus,
the potential energy of the auction must be greater or equal
to 0.
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Market-Clearing Prices: Termination

Theorem (see [2])
The procedure always terminates.

Proof
Initially, all sellers have potential 0 and buyers have
potential according to their highest valuation. Thus, at the
start P0 ≥ 0.
In every round, when sellers in N(B) (B constricted set)
raise their prices, each of these sellers’ potential increases
and the potential of buyers in B decreases.
Since |B|> |N(B)|, the overall potential decreases.
Because the potential cannot drop below 0, the procedure
will terminate.
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Single-item auction as special case

a

b

c

1

2

3

3, 0, 0

2, 0, 0

1, 0, 0

Item a is the single item, the other items are dummies (to
have a balanced bipartite graph)
Item a increases its price until only one is left.
Finally, 1 gets assigned to a and he/she/it must pay 2.
Proposition: Market-Clearing Prices auction implements
English auction (second-price sealed-bid auction).
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