Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser Summer Term 2017

Course outline

- Introduction
- 2 Agent-Based Simulation
- Agent Architectures
- Beliefs, Desires, Intentions
- Norms and Duties
- 6 Communication and Argumentation
- 7 Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Motivation

Agents' abilities and/or preferences differ. How can they reach agreements?

- Argumentation Frameworks approach
 - Centralized approach: Agents exchange their arguments and then compute solution.
- Distributed Constraint Satisfaction approach
 - De-centralized: Agents hold private constraints and exchange partial solutions.

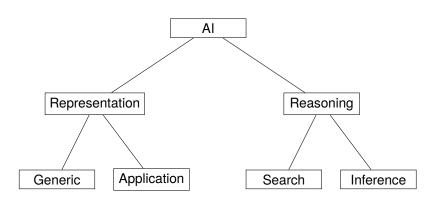
CSP (Freuder & Mackworth, 2006)

"Constraint satisfaction involves finding a value for each one of a set of problem variables where constraints specify that some subsets of values cannot be used together." ([1, p. 11])

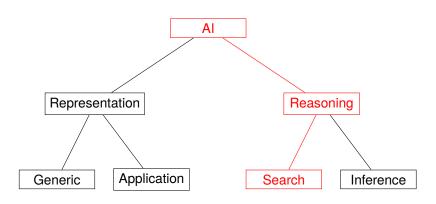
Examples:

- Pick appetizer, main dish, wine, dessert such that everything fits together.
- Place furniture in a room such that doors, windows, light switches etc. are not blocked.
- **...**

AI Research on Constraint Satisfaction



AI Research on Constraint Satisfaction



Constraint Satisfaction Problem

CSP

A CSP is a triple $\mathcal{P} = (X, D, C)$:

- $X = (x_1, \dots, x_n)$: finite list of variables
- $D = (D_1, \dots, D_n)$: finite domains
- $C = (C_1, ..., C_k)$: finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i, ..., x_l)$ is defined on $D_i \times ... \times D_l$
- Unary constraints: $C(Wine) \leftrightarrow Wine \neq riesling$
- Binary constraints: C(WineAppetizer, WineMainDish) ↔ WineAppetizer ≠ WineMainDish
- k-ary: $C(Alice, Bob, John) \leftrightarrow Alice \land Bob \rightarrow John$

Problem statement

Given a graph G = (V, E) and a set of colors N. Find a coloring $f : V \to N$ that assigns to each $v_i \in V$ a color different from those of its neighbors.

CSP formulation

Represent graph coloring as CSP $\mathcal{P} = (X, D, C)$:

- Each variable $x_i \in X$ represents the color of node $v_i \in V$
- Each $x_i \in X$ can get a value from its domain $D_i = N$
- For all $(x_i, x_j) \in E$ add a constraint $c(x_i, x_j) \leftrightarrow x_i \neq x_j$.

Problem statement

Given a graph G = (V, E) and a set of colors N. Find a coloring $f: V \to N$ that assigns to each $v_i \in V$ a color different from those of its neighbors.

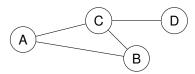
CSP formulation

Represent graph coloring as CSP $\mathcal{P} = (X, D, C)$:

- Each variable $x_i \in X$ represents the color of node $v_i \in V$
- Each $x_i \in X$ can get a value from its domain $D_i = N$
- For all $(x_i, x_j) \in E$ add a constraint $c(x_i, x_j) \leftrightarrow x_i \neq x_j$.

Graph coloring: Encoding

Colors: 1, 2, 3



CSP Encoding

Represention of this instance as a CSP $\mathcal{P} = (X, D, C)$:

$$X = (x_A, x_B, x_C, x_D)$$

$$D = (\{1,2,3\},\{1,2,3\},\{1,2,3\},\{1,2,3\})$$

$$C(x_A, x_B) \leftrightarrow x_A \neq x_B, C(x_A, x_C) \leftrightarrow x_A \neq x_C, \\ C(x_B, x_C) \leftrightarrow x_B \neq x_C, C(x_C, x_D) \leftrightarrow x_C \neq x_D$$

Definition

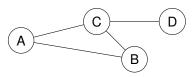
A solution of a CSP $\mathcal{P} = (X, D, C)$ is an assignment

 $a: X \to \bigcup_{i:x_i \in X} D_i$ such that:

- \blacksquare $a(x_i) \in D_i$ for each $x_i \in X$
- Every constraint $C(x_i,...,x_m) \in C$ is evaluated true under $\{x_i \to a(x_i),...,x_m \to a(x_m)\}.$
- $\blacksquare \mathcal{P}$ is satisfiable iff \mathcal{P} has a solution.

Graph coloring: Solution

Colors: 1, 2, 3



Solutions

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 1$$

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 2$$

$$a(x_A) = 2, a(x_B) = 1, a(x_C) = 3, a(x_D) = 1$$

. . .

Here: 81 assignments, 12 solutions. Can we do better than listing all assignments?

- Deciding if a graph (V, E) can be colored with k colors is known to be NP-complete.
- CSP is NP-complete:
 - NP-hardness: Polynomial-time reduction on slide 7.
 - Given an assignment, determining whether the assignment is a solution can be done in polynomial time (just check that all the $|E| \in O(|V|^2)$ constraints).
- Remark: Graph coloring can also be solved by asking if there is a stable labelling for a corresponding argumentation framework (also a NP-complete problem). ⇒CSPs can be solved using argumentation and vice-versa.

- In case of n variables with domains of size d there are $O(d^n)$ assignments.
- We can use all sorts of search algorithms to intelligently explore the space of assignments and to eventually find a solution.
- We will use backtracking search and employ two concepts:
 - Partial solution
 - Nogood

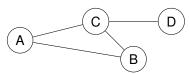
Definition

Given a CSP $\mathcal{P} = (X, D, C)$.

- An instantiation of a subset $X' \subseteq X$ is an assignment $a: X' \to \bigcup_{i:x_i \in X'} D_i$.
- An instantiation a of X' is a partial solution if a satisfies all constraints in C defined over some subset of X'. Then a is locally consistent.
- Hence, a solution is a locally consistent instantiation of all $x \in X$.

Graph coloring: Partial Solution

Colors: 1, 2, 3



Locally consistent partial solutions

$$a(x_A) = \bot, a(x_B) = \bot, a(x_C) = \bot, a(x_D) = \bot$$

$$a(x_A) = 1, a(x_B) = \bot, a(x_C) = \bot, a(x_D) = \bot$$

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = \bot, a(x_D) = \bot$$

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = \bot$$

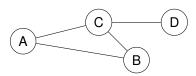
$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 1$$

Definition

Given a CSP $\mathcal{P} = (X, D, C)$. An instantiation a' of $X' \subseteq X$ is a nogood of \mathcal{P} iff a' cannot be extended to a full solution of \mathcal{P} .

Graph coloring: Nogood

Colors: 1, 2, 3



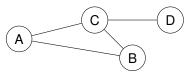
Nogood

$$a(x_A) = 1, a(x_B) = 1, a(x_C) = \bot, a(x_D) = \bot$$

Backtracking Algorithm

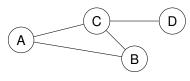

```
function BT(\mathcal{P}, part_sol)
    if IsSolution(part sol) then
       return part sol
    end if
    if isNoGood(part sol, P) then
       return false
    end if
    select some x<sub>i</sub> so far undefined in part_sol
    for possible values d \in D_i for x_i do
       par\_sol \leftarrow \mathsf{BT}(\mathcal{P}, par\_sol[x_i|d])
       if par sol ≠ False then
           return par sol
       end if
    end for
    return False
end function
```


Colors: 1, 2, 3

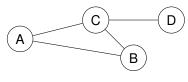


$$\textit{BT}(\mathcal{P},\{\})$$

Colors: 1, 2, 3



$$BT(\mathcal{P},\{x_A\to 1\})$$



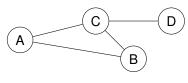
$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})$$

Colors: 1, 2, 3

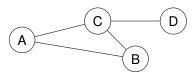


$$BT(\mathcal{P},\{\})$$

$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1\}) \underbrace{\phantom{BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})}}_{BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})}$$

Colors: 1, 2, 3

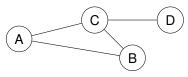


$$BT(\mathcal{P}, \{x_A \to 1\})$$
 $BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})$
 $BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})$

 $BT(\mathcal{P},\{\})$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})$$
 $BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

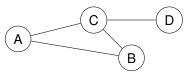


$$BT(\mathcal{P}, \{\})$$

$$BT(\mathcal{P}, \{x_A \to 1\}) \underbrace{\phantom{BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\})}}_{BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})}$$

$$BT(\mathcal{P}, \{x_A \rightarrow 1, x_B \rightarrow 2, x_C \rightarrow 1\})$$

$$BT(\mathcal{P}, \{x_A \rightarrow 1, x_B \rightarrow 2, x_C \rightarrow 2\})$$



$$BT(\mathcal{P},\{\})$$

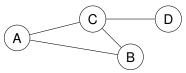
$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P},\{x_A\to 1,x_B\to 1\}) \quad BT(\mathcal{P},\{x_A\to 1,x_B\to 2\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \rightarrow 1, x_B \rightarrow 2, x_C \rightarrow 2\})$$

$$BT(\mathcal{P}, \{x_A \rightarrow 1, x_B \rightarrow 2, x_C \rightarrow 3\})$$



$$BT(\mathcal{P},\{\})$$

$$BT(\mathcal{P},\{x_A\to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 3, x_D \to 1\})$$

$$BT(\mathcal{P}, \{x_A \rightarrow 1, x_B \rightarrow 2, x_C \rightarrow 3\})$$

- Nodes A, B, C, and D represent families living in a neighborhood. An edge between two nodes models that the represented families are direct neighbors. Each family wants to buy a new car, but they don't want their respective neighbors to own the same car as they do.
- Centralized solution: A, B, C, D meet, make their constraints public and find a solution together.
- Decentralized solution: A, B, C, D do not meet. Instead, they just buy cars. If someone dislikes one other's choice (s)he will either buy another one or tell the neighbor to do so (without telling why).

- Centralized agent decision making encoded as CSP:
 - Each variable stands for the action of an agent. Constraints between variables model the interrelations between the agents' actions. A CSP solver solves the CSP and communicates the result to each of the agents.
- This, however, presupposes a central component that knows about all the variables and constraints. So what?
 - In some applications, gathering all information to one component is undesirable or impossible, e.g., for security/privacy reasons, because of too high communication costs, because of the need to convert internal knowledge into an exchangeable format.
- ⇒Distributed Constraint Satisfaction (DisCSP)

CSP

A DistCSP is a tuple $\mathcal{P} = (A, X, D, C)$:

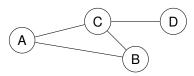
- \blacksquare $A = (ag_1, ..., ag_n)$: finite list of agents
- $X = (x_1, ..., x_n)$: finite list of variables
- \blacksquare $D = (D_1, ..., D_n)$: finite list of domains
- $C = (C_1, ..., C_k)$: finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i,...,x_l)$ is defined on $D_i \times ... \times D_l$
- Variable x_i belongs (only) to agent ag_i
- Agent ag_i knows all constraints on x_i

Definition

- An assignment a is a solution to a distributed CSP (DisCSP) instance if and only if:
 - Every variable x_i has some assigned value $d \in D_i$, and
 - For all agents ag_i : Every constraint predicate that is known by ag_i evaluates to **true** under the assignment $a(x_i) = d$

Example as a DisCSP

Colors: 1, 2, 3



Encoding

■
$$A = (A, B, C, D), X = (x_A, x_B, x_C, x_D), D_A = \{1, 2, 3\}, D_B = \{1\}, D_C = \{2, 3\}, D_D = \{3\}$$

Constraints

 \blacksquare $A: x_A \neq x_B, x_A \neq x_C$

 \blacksquare $B: x_B \neq x_A, x_B \neq x_C$

 $C: x_C \neq x_A, x_C \neq x_B, x_C \neq x_D$

 \square $D: x_D \neq x_C$

- Modification of the backtracking algorithm
 - Agents agree on an instantiation order for their variables (x_1 goes first, then goes x_2 etc.)
 - Each agent receiving a partial solution instantiates its variable based on the constraints it knows about
 - If the agent finds such a value it will append it to the partial solution and pass it on to the next agent
 - Otherwise, it sends a backtracking message to the previous agent

Synchronous Backtracking: Example Trace

- 1 A, B, C, and D agree on acting in this order
- 2 A sets x_A to 1 and sends $\{x_A \rightarrow 1\}$ to B
- 3 B sends backtrack! to A
- A sets x_A to 2 and sends $\{x_A \rightarrow 2\}$ to B
- B sets x_B to 1 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1\}$ to C
- 6 C sets c_C to 3 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1, x_C \rightarrow 3\}$ to D
- 7 D sends backtrack! to C
- 8 C sends backtrack! to B
- 9 B sends backtrack! to A
- 10 A sets x_A to 3 and sends $\{x_A \rightarrow 3\}$ to B
- 11 B sets x_B to 1 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1\}$ to C
- 12 C sets x_C to 2 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1, x_C \rightarrow 2\}$ to D
- 13 D sets x_D to 3.

- Pro: No need to share private constraints and domains with some centralized decision maker
- Con: Determining instantiation order requires communication costs
- Con: Agents act sequentially instead of taking advantage of parallelism, i.e., at any given time, only one agent is receiving a partial solution and acts on it

- Each agent maintains three properties:
 - current_value: value of its owned variable (subject to revision)
 - agent_view: what the agent knows so far about the values of other agents
 - constraint_list: ist of private constraints and received nogoods
- Each agent *i* can send messages of two kinds:
 - \blacksquare (ok?, $x_i \rightarrow d$)
 - \blacksquare (nogood!, i, $\{x_j \rightarrow d_j, x_k \rightarrow d_k, \ldots\}$)

- Assumption: For each contraint, there is one evaluating agent and one value sending agent. Hence, the graph is directed!
 - In some applications this may be naturally so (e.g., only one of the agents actually cares about the constraint)
 - In other applications, two agents involved in a constraint have to decide who will be the sender/evaluator.

Asynchronous Backtracking


```
if received (ok?, (x_i, d_i)) then
   add (x_i, d_i) to agent_view
   CHECKAGENTVIEW()
end if
function CHECKAGENTVIEW
   if agent view and current value are not consistent then
      if no value in D_i is consistent with agent view then
          BACKTRACK()
      else
          select d \in D_i s.th. agent view and d consistent
          current value ← d
          send (ok?, (x_i, d)) to outgoing links
      end if
   end if
end function
```

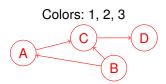
Asynchronous Backtracking (cont.)


```
function BACKTRACK
   if \emptyset is a nogood then
       broadcast that there is no solution and terminate
   end if
   generate a nogood V (inconsistent subset of agent view)
   select (x_i, d_i) \in V s.th. x_i has lowest priority in V
   send (nogood!, x_i, V) to x_i; remove (x_i, d_i) from agent\_view
end function
if received (nogood!, x_i, {nogood})) then
   add nogood to constraint list
   if nogood contains agent x_k that is not yet a neighbor then
       add x_k as neighbor and ask x_k to add x_i as neighbor
   end if
   CHECKAGENTVIEW()
end if
```

Asynchronous Backtracking: Example

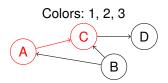
■ The graph is now directed (source: sender agent, sink: evaluator agent). All other things the same as before.

В



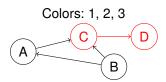
1 Each agent initializes its private variable and sends ok?-messages down the links

Agent	Current Value	Agent View	Constraint List
Α	1	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	2	$\{x_A \rightarrow 1, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$



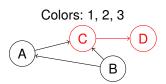
2 Agent A changes its value to 2 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	2	$\{x_A \to 2, x_B \to 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$



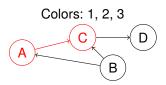
3 Agent C changes its value to 3 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 3\}$	$x_D \neq x_C$



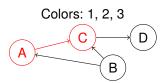
4 Agent D sends (nogood!, D, $\{x_c \rightarrow 3\}$) to C

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	0
С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B, X_C \neq 3$
D	3	0	$X_D \neq X_C$



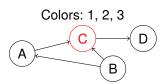
5 Agent C sends (nogood!, C, $\{x_A \rightarrow 2\}$) to A

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B, X_A \neq 2$
В	1	Ø	0
С	3	$\{x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	Ø	$x_D \neq x_C$



6 Agent A sets value to 3 and sends ok? to C

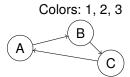
Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	Ø
С	3	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	Ø	$x_D \neq x_C$



7 Agent C sets value to 2 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	Ø
С	2	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$

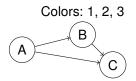
Loops



- A, B, and C set their variables to 1 and send ok?
- A, B, and C set their variables to 2 and send ok?
- 3 A, B, and C set their variables to 1 and send ok?
- 4 ...

Avoiding Loops

Postulate an order over the agents (e.g., IDs). Based on that order, e.g., a link always goes from a higher-order to a lower-order agent.



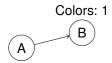
- A, B, and C set their variables to 1, A and B send ok?
- B and C set their variables to 2, B sends ok?
- C sets its variable to 3

The empty Nogood

Theorem (see [2])

The CSP is unsatisfiable iff the empty Nogood is generated.

Example of an empty nogood:



- A and B set their variables to 1, A sends ok?
- 2 B sends (nogood!, $x_A \rightarrow 1$)
- A generates a nogood, and as A's agent view is empty, the generated nogood is empty as well.

■ This time

- Constraint Satisfaction Problem & Backtracking algorithm
- Distributed Constraint Satisfaction Problem & Synchronous and Asynchronous Backtracking

Next time

■ Agents express preferences by numbers ⇒Optimal assignments using Auctions & Markets

Course outline

- Introduction
- 2 Agent-Based Simulation
- Agent Architectures
- 4 Beliefs, Desires, Intentions
- Norms and Duties
- 6 Communication and Argumentation
- 7 Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Literature I

M. Yokoo, T. Ishida, E. H. Durfee, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed problem solving, In 12th IEEE International Conference on Distributed Computing Systems '92, pp. 614–621, 1992.

M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction: A review, Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 2, pp. 198–212, 2000.