Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

JNI

UNI FREIBURG

3 / 44

Bernhard Nebel, Felix Lindner, and Thorsten Engesser Summer Term 2017

Motivation

Agents' abilities and/or preferences differ. How can they reach agreements?

- Argumentation Frameworks approach
 - Centralized approach: Agents exchange their arguments and then compute solution.
- Distributed Constraint Satisfaction approach
 - De-centralized: Agents hold private constraints and exchange partial solutions.

Course outline

- Introduction
- 2 Agent-Based Simulation
- 3 Agent Architectures
- Beliefs, Desires, Intentions
- 5 Norms and Duties
- 6 Communication and Argumentation
- Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Nebel, Lindner, Engesser - MAS

2 / 44

Constraint Satisfaction: Intro

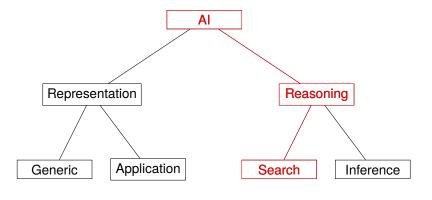
CSP (Freuder & Mackworth, 2006)

"Constraint satisfaction involves finding a value for each one of a set of problem variables where constraints specify that some subsets of values cannot be used together." ([1, p. 11])

- Examples:
 - Pick appetizer, main dish, wine, dessert such that everything fits together.
 - Place furniture in a room such that doors, windows, light switches etc. are not blocked.
 - ...

AI Research on Constraint Satisfaction

FREIBL



Nebel, Lindner, Engesser - MAS

Constraint Satisfaction Problem

CSP

A CSP is a triple $\mathcal{P} = (X, D, C)$:

- \blacksquare $X = (x_1, ..., x_n)$: finite list of variables
- \blacksquare $D = (D_1, \dots, D_n)$: finite domains
- $C = (C_1, ..., C_k)$: finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i, ..., x_l)$ is defined on $D_i \times ... \times D_l$
- Unary constraints: $C(Wine) \leftrightarrow Wine \neq riesling$
- Binary constraints: *C(WineAppetizer, WineMainDish)* ↔ *WineAppetizer* ≠ *WineMainDish*
- k-ary: $C(Alice, Bob, John) \leftrightarrow Alice \land Bob \rightarrow John$

Nebel, Lindner, Engesser - MAS

6 / 44

CSP: Graph coloring

5 / 44

7 / 44

Problem statement

Given a graph G = (V, E) and a set of colors N. Find a coloring $f : V \to N$ that assigns to each $v_i \in V$ a color different from those of its neighbors.

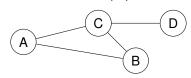
CSP formulation

Represent graph coloring as CSP $\mathcal{P} = (X, D, C)$:

- Each variable $x_i \in X$ represents the color of node $v_i \in V$
- Each $x_i \in X$ can get a value from its domain $D_i = N$
- For all $(x_i, x_j) \in E$ add a constraint $c(x_i, x_j) \leftrightarrow x_i \neq x_j$.

Graph coloring: Encoding

Colors: 1, 2, 3



CSP Encoding

Represention of this instance as a CSP $\mathcal{P} = (X, D, C)$:

- $X = (x_A, x_B, x_C, x_D)$
- $D = (\{1,2,3\},\{1,2,3\},\{1,2,3\},\{1,2,3\})$
- $C(x_A, x_B) \leftrightarrow x_A \neq x_B, C(x_A, x_C) \leftrightarrow x_A \neq x_C, C(x_B, x_C) \leftrightarrow x_B \neq x_C, C(x_C, x_D) \leftrightarrow x_C \neq x_D$

Solution of a CSP

UNIFREIBURG

Definition

A solution of a CSP $\mathcal{P} = (X, D, C)$ is an assignment $a: X \to \bigcup_{i:x_i \in X} D_i$ such that:

- \blacksquare $a(x_i) \in D_i$ for each $x_i \in X$
- Every constraint $C(x_i,...,x_m) \in C$ is evaluated true under $\{x_i \to a(x_i),...,x_m \to a(x_m)\}.$
- $\blacksquare \mathcal{P}$ is satisfiable iff \mathcal{P} has a solution.

Nebel, Lindner, Engesser - MAS

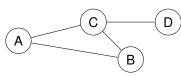
9 / 44

CSP: NP-completeness (Sketch)

- Deciding if a graph (V, E) can be colored with k colors is known to be NP-complete.
- CSP is NP-complete:
 - NP-hardness: Polynomial-time reduction on slide 7.
 - Given an assignment, determining whether the assignment is a solution can be done in polynomial time (just check that all the $|E| \in O(|V|^2)$ constraints).
- Remark: Graph coloring can also be solved by asking if there is a stable labelling for a corresponding argumentation framework (also a NP-complete problem). ⇒CSPs can be solved using argumentation and vice-versa.

Graph coloring: Solution

Colors: 1, 2, 3



Solutions

$$a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 1$$

 $a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = 2$
 $a(x_A) = 2, a(x_B) = 1, a(x_C) = 3, a(x_D) = 1$

■ Here: 81 assignments, 12 solutions. Can we do better than listing all assignments?

Nebel, Lindner, Engesser - MAS

10 / 44

Using search

- In case of n variables with domains of size d there are $O(d^n)$ assignments.
- We can use all sorts of search algorithms to intelligently explore the space of assignments and to eventually find a solution.
- We will use backtracking search and employ two concepts:
 - Partial solution
 - Nogood

Partial solution of a CSP

UNI FREIBU

Definition

Given a CSP $\mathcal{P} = (X, D, C)$.

- An instantiation of a subset $X' \subseteq X$ is an assignment $a: X' \to \bigcup_{i:x_i \in X'} D_i$.
- An instantiation a of X' is a partial solution if a satisfies all constraints in C defined over some subset of X'. Then a is locally consistent.
- Hence, a solution is a locally consistent instantiation of all $x \in X$.

Nebel, Lindner, Engesser - MAS

13 / 44

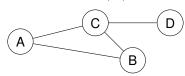
Nogoods

Definition

Given a CSP $\mathcal{P} = (X, D, C)$. An instantiation a' of $X' \subseteq X$ is a nogood of \mathcal{P} iff a' cannot be extended to a full solution of \mathcal{P} .

Graph coloring: Partial Solution

Colors: 1, 2, 3



Locally consistent partial solutions

$$a(x_A) = \bot, a(x_B) = \bot, a(x_C) = \bot, a(x_D) = \bot$$

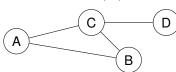
 $a(x_A) = 1, a(x_B) = \bot, a(x_C) = \bot, a(x_D) = \bot$
 $a(x_A) = 1, a(x_B) = 2, a(x_C) = \bot, a(x_D) = \bot$
 $a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = \bot$
 $a(x_A) = 1, a(x_B) = 2, a(x_C) = 3, a(x_D) = \bot$

Nebel, Lindner, Engesser - MAS

14 / 44

Graph coloring: Nogood

Colors: 1, 2, 3



Nogood

$$a(x_A) = 1, a(x_B) = 1, a(x_C) = \bot, a(x_D) = \bot$$

Backtracking Algorithm


```
function BT(\mathcal{P}, part sol)
   if IsSolution(part sol) then
       return part sol
   end if
   if isNoGood(part sol, P) then
       return false
   end if
   select some x_i so far undefined in part sol
   for possible values d \in D_i for x_i do
       par\_sol \leftarrow BT(\mathcal{P}, par\_sol[x_i|d])
       if par sol ≠ False then
           return par sol
       end if
   end for
   return False
end function
```

Nebel, Lindner, Engesser - MAS

17 / 44

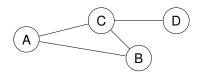
An MAS Example

- Nodes A, B, C, and D represent families living in a neighborhood. An edge between two nodes models that the represented families are direct neighbors. Each family wants to buy a new car, but they don't want their respective neighbors to own the same car as they do.
- Centralized solution: A, B, C, D meet, make their constraints public and find a solution together.
- Decentralized solution: A, B, C, D do not meet. Instead, they just buy cars. If someone dislikes one other's choice (s)he will either buy another one or tell the neighbor to do so (without telling why).

Graph coloring: Backtracking

NI REIBUR

Colors: 1, 2, 3



$$BT(\mathcal{P}, \{x_A \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 1\}) \quad BT(\mathcal{P}, \{x_A \to 1, x_B \to 2\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 1\})$$

$$BT(\mathcal{P}, \{x_A \to 1, x_B \to 2, x_C \to 3\})$$

Nebel, Lindner, Engesser - MAS

18 / 44

Distributed Constraint Satisfaction (DisCSP): Motivation

- Centralized agent decision making encoded as CSP:
 - Each variable stands for the action of an agent. Constraints between variables model the interrelations between the agents' actions. A CSP solver solves the CSP and communicates the result to each of the agents.
- This, however, presupposes a central component that knows about all the variables and constraints. So what?
 - In some applications, gathering all information to one component is undesirable or impossible, e.g., for security/privacy reasons, because of too high communication costs, because of the need to convert internal knowledge into an exchangeable format.
- ⇒ Distributed Constraint Satisfaction (DisCSP)

Distributed Constraint Satisfaction Problem

UNI FREIBURG

CSP

A DistCSP is a tuple $\mathcal{P} = (A, X, D, C)$:

- \blacksquare $A = (ag_1, \dots, ag_n)$: finite list of agents
- \blacksquare $X = (x_1, ..., x_n)$: finite list of variables
- \blacksquare $D = (D_1, \dots, D_n)$: finite list of domains
- \blacksquare $C = (C_1, ..., C_k)$: finite list of constraint predicates
- Variable x_i can take values from D_i
- Constraint predicate $C(x_i, ..., x_l)$ is defined on $D_i \times ... \times D_l$
- Variable x_i belongs (only) to agent ag_i
- \blacksquare Agent ag_i knows all constraints on x_i

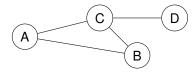
Nebel, Lindner, Engesser - MAS

21 / 44

Example as a DisCSP

23 / 44

Colors: 1, 2, 3



Encoding

- \blacksquare $A = (A, B, C, D), X = (x_A, x_B, x_C, x_D), D_A = \{1, 2, 3\}, D_B = \{1\},$ $D_C = \{2,3\}, D_D = \{3\}$
- Constraints
 - $\blacksquare A: x_A \neq x_B, x_A \neq x_C$
 - $\blacksquare B: X_B \neq X_A, X_B \neq X_C$
 - $C: x_C \neq x_A, x_C \neq x_B, x_C \neq x_D$
 - $\blacksquare D: x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

DisCSP: Solution

Definition

- An assignment a is a solution to a distributed CSP (DisCSP) instance if and only if:
 - Every variable x_i has some assigned value $d \in D_i$, and
 - For all agents *ag_i*: Every constraint predicate that is known by aq_i evaluates to **true** under the assignment $a(x_i) = d$

Nebel, Lindner, Engesser - MAS

22 / 44

Synchronous Backtracking

- Modification of the backtracking algorithm
 - Agents agree on an instantiation order for their variables (x_1 goes first, then goes x_2 etc.)
 - 2 Each agent receiving a partial solution instantiates its variable based on the constraints it knows about
 - 3 If the agent finds such a value it will append it to the partial solution and pass it on to the next agent
 - 4 Otherwise, it sends a backtracking message to the previous agent

Synchronous Backtracking: Example Trace

UNI FREIBURG

- A, B, C, and D agree on acting in this order
- 2 A sets x_A to 1 and sends $\{x_A \rightarrow 1\}$ to B
- B sends backtrack! to A
- A sets x_A to 2 and sends $\{x_A \rightarrow 2\}$ to B
- **5** B sets x_B to 1 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1\}$ to C
- 6 C sets c_C to 3 and sends $\{x_A \rightarrow 2, x_B \rightarrow 1, x_C \rightarrow 3\}$ to D
- 7 D sends backtrack! to C
- 8 C sends backtrack! to B
- 9 B sends backtrack! to A
- 10 A sets x_A to 3 and sends $\{x_A \rightarrow 3\}$ to B
- 11 B sets x_B to 1 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1\}$ to C
- 12 C sets x_C to 2 and sends $\{x_A \rightarrow 3, x_B \rightarrow 1, x_C \rightarrow 2\}$ to D
- 13 D sets x_D to 3.

Nebel, Lindner, Engesser - MAS

25 / 44

Asynchronous Backtracking

UNI FREIBURG

- Each agent maintains three properties:
 - current_value: value of its owned variable (subject to revision)
 - agent_view: what the agent knows so far about the values of other agents
 - constraint_list: ist of private constraints and received nogoods
- Each agent *i* can send messages of two kinds:
 - \blacksquare (ok?, $x_j \rightarrow d$)
 - \blacksquare (nogood!, i, $\{x_i \rightarrow d_i, x_k \rightarrow d_k, \ldots\}$)

Synchronous Backtracking: Pro/Con

- Pro: No need to share private constraints and domains with some centralized decision maker
- Con: Determining instantiation order requires communication costs
- Con: Agents act sequentially instead of taking advantage of parallelism, i.e., at any given time, only one agent is receiving a partial solution and acts on it

Nebel, Lindner, Engesser - MAS

26 / 44

Asynchronous Backtracking: Assumption

- Assumption: For each contraint, there is one evaluating agent and one value sending agent. Hence, the graph is directed!
 - In some applications this may be naturally so (e.g., only one of the agents actually cares about the constraint)
 - In other applications, two agents involved in a constraint have to decide who will be the sender/evaluator.

Asynchronous Backtracking

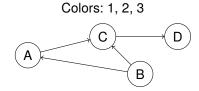

```
if received (ok?, (x_i, d_i)) then
   add (x_i, d_i) to agent view
   CHECKAGENTVIEW()
end if
function CHECKAGENTVIEW
   if agent view and current value are not consistent then
       if no value in D_i is consistent with agent view then
          BACKTRACK()
       else
          select d \in D_i s.th. agent view and d consistent
          current value \leftarrow d
          send (ok?, (x_i, d)) to outgoing links
       end if
   end if
end function
```

Nebel, Lindner, Engesser - MAS

29 / 44

Asynchronous Backtracking: Example

31 / 44



■ The graph is now directed (source: sender agent, sink: evaluator agent). All other things the same as before.

Asynchronous Backtracking (cont.)

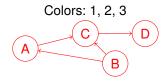
function BACKTRACK if \emptyset is a nogood then broadcast that there is no solution and terminate end if generate a nogood *V* (inconsistent subset of *agent_view*) select $(x_i, d_i) \in V$ s.th. x_i has lowest priority in V send (nogood!, x_i , V) to x_i ; remove (x_i , d_i) from $agent_view$ end function **if** received (nogood!, x_i , {nogood})) **then** add nogood to constraint list

if *nogood* contains agent x_k that is not yet a neighbor **then** add x_k as neighbor and ask x_k to add x_i as neighbor end if CHECKAGENTVIEW() end if

Nebel, Lindner, Engesser - MAS

30 / 44

Example Trace

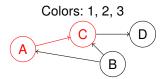


1 Each agent initializes its private variable and sends ok?-messages down the links

Agent	Current Value	Agent View	Constraint List
Α	1	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	Ø	0
С	2	$\{x_A \rightarrow 1, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

Example Trace



2 Agent A changes its value to 2 and sends ok? to C

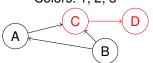
Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	Ø	Ø
С	2	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

33 / 44

Example Trace

Colors: 1, 2, 3



3 Agent C changes its value to 3 and sends ok? to D

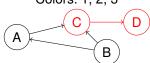
	Agent	Current Value	Agent View	Constraint List
-	Α	2	$\{x_B \rightarrow 1\}$	$x_A \neq x_B$
	В	1	Ø	Ø
	С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B$
	D	3	$\{x_C \rightarrow 3\}$	$x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

34 / 44

Example Trace

Colors: 1, 2, 3



4 Agent D sends (nogood!, D, $\{x_c \rightarrow 3\}$) to C

Agent	Current Value	Agent View	Constraint List
Α	2	$\{x_B \rightarrow 1\}$	$X_A \neq X_B$
В	1	0	Ø
С	3	$\{x_A \rightarrow 2, x_B \rightarrow 1\}$	$X_C \neq X_A, X_C \neq X_B, X_C \neq 3$
D	3	0	$x_D \neq x_C$
,			'

Nebel, Lindner, Engesser - MAS

35 / 44

Example Trace

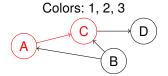
Colors: 1, 2, 3

5 Agent C sends (nogood!, C, $\{x_A \rightarrow 2\}$) to A

	Agent	Current Value	Agent View	Constraint List
_	Α	2	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
	В	1	Ø	0
	С	3	$\{x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
	D	3	0	$x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

Example Trace



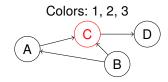
6 Agent A sets value to 3 and sends ok? to C

Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	0
С	3	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	0	$x_D \neq x_C$

Nebel, Lindner, Engesser - MAS

37 / 44

Example Trace



7 Agent C sets value to 2 and sends ok? to D

Agent	Current Value	Agent View	Constraint List
Α	3	$\{x_B \rightarrow 1\}$	$x_A \neq x_B, x_A \neq 2$
В	1	0	0
С	2	$\{x_A \rightarrow 3, x_B \rightarrow 1\}$	$x_C \neq x_A, x_C \neq x_B, x_C \neq 3$
D	3	$\{x_C \rightarrow 2\}$	$x_D \neq x_C$

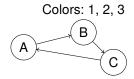
Nebel, Lindner, Engesser - MAS

38 / 44

Loops

39 / 44

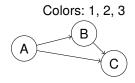
UNI FREIBUR



- A, B, and C set their variables to 1 and send ok?
- A, B, and C set their variables to 2 and send ok?
- 3 A, B, and C set their variables to 1 and send ok?
- 4 ...

Avoiding Loops

■ Postulate an order over the agents (e.g., IDs). Based on that order, e.g., a link always goes from a higher-order to a lower-order agent.



- A, B, and C set their variables to 1, A and B send ok?
- B and C set their variables to 2, B sends ok?
- C sets its variable to 3

Nebel, Lindner, Engesser - MAS

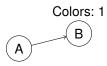
40 / 44

The empty Nogood

Theorem (see [2])

The CSP is unsatisfiable iff the empty Nogood is generated.

Example of an empty nogood:



- A and B set their variables to 1. A sends ok?
- \blacksquare B sends (nogood!, $x_A \rightarrow 1$)
- 3 A generates a nogood, and as A's agent view is empty, the generated nogood is empty as well.

Nebel, Lindner, Engesser - MAS

41 / 44

Course outline

- Introduction
- 2 Agent-Based Simulation
- 3 Agent Architectures
- Beliefs, Desires, Intentions
- 5 Norms and Duties
- **6** Communication and Argumentation
- 7 Coordination and Decision Making
 - Distributed Constraint Satisfaction
 - Auctions and Markets
 - Cooperative Game Theory

Summary and Outlook

■ This time

- Constraint Satisfaction Problem & Backtracking algorithm
- Distributed Constraint Satisfaction Problem & Synchronous and Asynchronous Backtracking
- Next time
 - Agents express preferences by numbers ⇒Optimal assigments using Auctions & Markets

Nebel, Lindner, Engesser - MAS

42 / 44

Literature I

E. C. Freuder, A. K. Mackworth, Constraint satisfaction: An emerging paradigm, In F. Rossi, P. van Beek, T. Walsh (Eds.) Handbook of Constraint Programming, Elsevier, 2006.

M. Yokoo, T. Ishida, E. H. Durfee, K. Kuwabara, Distributed constraint satisfaction for formalizing distributed problem solving, In 12th IEEE International Conference on Distributed Computing Systems '92, pp. 614-621, 1992.

M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction: A review, Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 2, pp. 198-212, 2000.