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3 Agent Architectures
4 Beliefs, Desires, Intentions
5 Norms and Duties
6 Communication and Argumentation
7 Coordination and Decision Making

Distributed Constraint Satisfaction
Auctions and Markets
Cooperative Game Theory
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Motivation

Agents’ abilities and/or preferences differ. How can they
reach agreements?

Argumentation Frameworks approach
Centralized approach: Agents exchange their arguments
and then compute solution.

Distributed Constraint Satisfaction approach
De-centralized: Agents hold private constraints and
exchange partial solutions.
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Constraint Satisfaction: Intro

CSP (Freuder & Mackworth, 2006)
“Constraint satisfaction involves finding a value for each one of a
set of problem variables where constraints specify that some
subsets of values cannot be used together.” ([1, p. 11])

Examples:
Pick appetizer, main dish, wine, dessert such that
everything fits together.
Place furniture in a room such that doors, windows, light
switches etc. are not blocked.
. . .
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AI Research on Constraint Satisfaction

AIAI

Representation ReasoningReasoning

Generic InferenceApplication SearchSearch
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Constraint Satisfaction Problem

CSP
A CSP is a triple P = (X ,D,C):

X = (x1, . . . ,xn): finite list of variables
D = (D1, . . . ,Dn): finite domains
C = (C1, . . . ,Ck): finite list of constraint predicates

Variable xi can take values from Di

Constraint predicate C(xi , . . . ,xl) is defined on Di× . . .×Dl

Unary constraints: C(Wine)↔Wine 6= riesling
Binary constraints: C(WineAppetizer,WineMainDish)↔
WineAppetizer 6= WineMainDish
k-ary: C(Alice,Bob,John)↔ Alice∧Bob→ John
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CSP: Graph coloring

Problem statement
Given a graph G = (V ,E) and a set of colors N. Find a coloring
f : V → N that assigns to each vi ∈ V a color different from those
of its neighbors.

CSP formulation
Represent graph coloring as CSP P = (X ,D,C):

Each variable xi ∈ X represents the color of node vi ∈ V
Each xi ∈ X can get a value from its domain Di = N
For all (xi ,xj) ∈ E add a constraint c(xi ,xj)↔ xi 6= xj .
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Graph coloring: Encoding

A
B

C D

Colors: 1, 2, 3

CSP Encoding
Represention of this instance as a CSP P = (X ,D,C):

X = (xA,xB,xC,xD)
D = ({1,2,3},{1,2,3},{1,2,3},{1,2,3})
C(xA,xB)↔ xA 6= xB, C(xA,xC)↔ xA 6= xC,
C(xB,xC)↔ xB 6= xC, C(xC,xD)↔ xC 6= xD
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Solution of a CSP

Definition
A solution of a CSP P = (X ,D,C) is an assignment
a : X →

⋃
i:xi∈X Di such that:

a(xi) ∈ Di for each xi ∈ X
Every constraint C(xi , . . . ,xm) ∈ C is evaluated true under
{xi → a(xi), . . . ,xm→ a(xm)}.

P is satisfiable iff P has a solution.
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Graph coloring: Solution

A
B

C D

Colors: 1, 2, 3

Solutions
a(xA) = 1,a(xB) = 2,a(xC) = 3,a(xD) = 1
a(xA) = 1,a(xB) = 2,a(xC) = 3,a(xD) = 2
a(xA) = 2,a(xB) = 1,a(xC) = 3,a(xD) = 1
. . .

Here: 81 assignments, 12 solutions. Can we do better than
listing all assignments?
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CSP: NP-completeness (Sketch)

Deciding if a graph (V ,E) can be colored with k colors is
known to be NP-complete.
CSP is NP-complete:

NP-hardness: Polynomial-time reduction on slide 7.
Given an assignment, determining whether the assignment
is a solution can be done in polynomial time (just check that
all the |E| ∈ O(|V |2) constraints).

Remark: Graph coloring can also be solved by asking if there is a stable
labelling for a corresponding argumentation framework (also a
NP-complete problem).⇒CSPs can be solved using argumentation and
vice-versa.
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Using search

In case of n variables with domains of size d there are
O(dn) assignments.
We can use all sorts of search algorithms to intelligently
explore the space of assignments and to eventually find a
solution.
We will use backtracking search and employ two concepts:

Partial solution
Nogood
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Partial solution of a CSP

Definition
Given a CSP P = (X ,D,C).

An instantiation of a subset X ′ ⊆ X is an assignment
a : X ′→

⋃
i:xi∈X ′ Di .

An instantiation a of X ′ is a partial solution if a satisfies all
constraints in C defined over some subset of X ′. Then a is
locally consistent.

Hence, a solution is a locally consistent instantiation of all
x ∈ X .

Nebel, Lindner, Engesser – MAS 13 / 44



Graph coloring: Partial Solution

A
B

C D

Colors: 1, 2, 3

Locally consistent partial solutions
a(xA) =⊥,a(xB) =⊥,a(xC) =⊥,a(xD) =⊥
a(xA) = 1,a(xB) =⊥,a(xC) =⊥,a(xD) =⊥
a(xA) = 1,a(xB) = 2,a(xC) =⊥,a(xD) =⊥
a(xA) = 1,a(xB) = 2,a(xC) = 3,a(xD) =⊥
a(xA) = 1,a(xB) = 2,a(xC) = 3,a(xD) = 1
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Nogoods

Definition
Given a CSP P = (X ,D,C). An instantiation a′ of X ′ ⊆ X is a
nogood of P iff a′ cannot be extended to a full solution of P .
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Graph coloring: Nogood

A
B

C D

Colors: 1, 2, 3

Nogood
a(xA) = 1,a(xB) = 1,a(xC) =⊥,a(xD) =⊥
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Backtracking Algorithm

function BT(P , part_sol)
if isSolution(part_sol) then

return part_sol
end if
if isNoGood(part_sol, P) then

return false
end if
select some xj so far undefined in part_sol
for possible values d ∈ Dj for xj do

par_sol ← BT(P , par_sol[xj |d])
if par_sol 6= False then

return par_sol
end if

end for
return False

end function
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Graph coloring: Backtracking

A
B

C D

Colors: 1, 2, 3

BT (P,{})

BT (P,{xA→ 1})

BT (P,{xA→ 1,xB→ 1}) BT (P,{xA→ 1,xB→ 2})

BT (P,{xA→ 1,xB→ 2,xC→ 1})

BT (P,{xA→ 1,xB→ 2,xC→ 2})

BT (P,{xA→ 1,xB→ 2,xC→ 3})

BT (P,{xA→ 1,xB→ 2,xC→ 3,xD→ 1})
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An MAS Example

Nodes A, B, C, and D represent families living in a
neighborhood. An edge between two nodes models that the
represented families are direct neighbors. Each family
wants to buy a new car, but they don’t want their respective
neighbors to own the same car as they do.
Centralized solution: A, B, C, D meet, make their
constraints public and find a solution together.
Decentralized solution: A, B, C, D do not meet. Instead,
they just buy cars. If someone dislikes one other’s choice
(s)he will either buy another one or tell the neighbor to do
so (without telling why).
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Distributed Constraint Satisfaction (DisCSP):
Motivation

Centralized agent decision making encoded as CSP:
Each variable stands for the action of an agent. Constraints
between variables model the interrelations between the
agents’ actions. A CSP solver solves the CSP and
communicates the result to each of the agents.

This, however, presupposes a central component that
knows about all the variables and constraints. So what?

In some applications, gathering all information to one
component is undesirable or impossible, e.g., for
security/privacy reasons, because of too high
communication costs, because of the need to convert
internal knowledge into an exchangeable format.

⇒Distributed Constraint Satisfaction (DisCSP)
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Distributed Constraint Satisfaction Problem

CSP
A DistCSP is a tuple P = (A,X ,D,C):

A = (ag1, . . . ,agn): finite list of agents
X = (x1, . . . ,xn): finite list of variables
D = (D1, . . . ,Dn): finite list of domains
C = (C1, . . . ,Ck): finite list of constraint predicates

Variable xi can take values from Di

Constraint predicate C(xi , . . . ,xl) is defined on Di× . . .×Dl

Variable xi belongs (only) to agent agi

Agent agi knows all constraints on xi
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DisCSP: Solution

Definition
An assignment a is a solution to a distributed CSP
(DisCSP) instance if and only if:

Every variable xi has some assigned value d ∈ Di , and
For all agents agi : Every constraint predicate that is known
by agi evaluates to true under the assignment a(xi ) = d
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Example as a DisCSP

A
B

C D

Colors: 1, 2, 3

Encoding
A = (A,B,C,D), X = (xA,xB,xC,xD), DA = {1,2,3}, DB = {1},
DC = {2,3}, DD = {3}
Constraints

A : xA 6= xB,xA 6= xC
B : xB 6= xA,xB 6= xC
C : xC 6= xA,xC 6= xB,xC 6= xD
D : xD 6= xC
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Synchronous Backtracking

Modification of the backtracking algorithm
1 Agents agree on an instantiation order for their variables (x1

goes first, then goes x2 etc.)
2 Each agent receiving a partial solution instantiates its

variable based on the constraints it knows about
3 If the agent finds such a value it will append it to the partial

solution and pass it on to the next agent
4 Otherwise, it sends a backtracking message to the previous

agent
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Synchronous Backtracking: Example Trace

1 A, B, C, and D agree on acting in this order

2 A sets xA to 1 and sends {xA→ 1} to B

3 B sends backtrack! to A

4 A sets xA to 2 and sends {xA→ 2} to B

5 B sets xB to 1 and sends {xA→ 2,xB→ 1} to C

6 C sets cC to 3 and sends {xA→ 2,xB→ 1,xC→ 3} to D

7 D sends backtrack! to C

8 C sends backtrack! to B

9 B sends backtrack! to A

10 A sets xA to 3 and sends {xA→ 3} to B

11 B sets xB to 1 and sends {xA→ 3,xB→ 1} to C

12 C sets xC to 2 and sends {xA→ 3,xB→ 1,xC→ 2} to D

13 D sets xD to 3.
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Synchronous Backtracking: Pro/Con

Pro: No need to share private constraints and domains with
some centralized decision maker
Con: Determining instantiation order requires
communication costs
Con: Agents act sequentially instead of taking advantage of
parallelism, i.e., at any given time, only one agent is
receiving a partial solution and acts on it
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Asynchronous Backtracking

Each agent maintains three properties:
current_value: value of its owned variable (subject to
revision)
agent_view: what the agent knows so far about the values
of other agents
constraint_list: ist of private constraints and received
nogoods

Each agent i can send messages of two kinds:
(ok?, xj → d)
(nogood!, i, {xj → dj ,xk → dk , . . .})
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Asynchronous Backtracking: Assumption

Assumption: For each contraint, there is one evaluating
agent and one value sending agent. Hence, the graph is
directed!

In some applications this may be naturally so (e.g., only one
of the agents actually cares about the constraint)
In other applications, two agents involved in a constraint
have to decide who will be the sender/evaluator.
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Asynchronous Backtracking

if received (ok?, (xj ,dj )) then
add (xj ,dj ) to agent_view
CheckAgentView( )

end if

function CheckAgentView
if agent_view and current_value are not consistent then

if no value in Di is consistent with agent_view then
Backtrack( )

else
select d ∈ Di s.th. agent_view and d consistent
current_value← d
send (ok?, (xi ,d)) to outgoing links

end if
end if

end function
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Asynchronous Backtracking (cont.)

function Backtrack
if /0 is a nogood then

broadcast that there is no solution and terminate
end if
generate a nogood V (inconsistent subset of agent_view)
select (xj ,dj ) ∈ V s.th. xj has lowest priority in V
send (nogood!, xi , V) to xj ; remove (xj ,dj ) from agent_view

end function

if received (nogood!, xj , {nogood})) then
add nogood to constraint_list
if nogood contains agent xk that is not yet a neighbor then

add xk as neighbor and ask xk to add xi as neighbor
end if
CheckAgentView( )

end if
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Asynchronous Backtracking: Example

A
B

C D

Colors: 1, 2, 3

The graph is now directed (source: sender agent, sink:
evaluator agent). All other things the same as before.
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Example Trace

A
B

C D
Colors: 1, 2, 3

1 Each agent initializes its private variable and sends
ok?-messages down the links

Agent Current Value Agent View Constraint List
A 1 {xB→ 1} xA 6= xB
B 1 /0 /0
C 2 {xA→ 1,xB→ 1} xC 6= xA,xC 6= xB
D 3 {xC→ 2} xD 6= xC
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Example Trace

A
B

C D
Colors: 1, 2, 3

2 Agent A changes its value to 2 and sends ok? to C

Agent Current Value Agent View Constraint List
A 2 {xB→ 1} xA 6= xB
B 1 /0 /0
C 2 {xA→ 2,xB→ 1} xC 6= xA,xC 6= xB
D 3 {xC→ 2} xD 6= xC
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Example Trace

A
B

C D
Colors: 1, 2, 3

3 Agent C changes its value to 3 and sends ok? to D

Agent Current Value Agent View Constraint List
A 2 {xB→ 1} xA 6= xB
B 1 /0 /0
C 3 {xA→ 2,xB→ 1} xC 6= xA,xC 6= xB
D 3 {xC→ 3} xD 6= xC
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Example Trace

A
B

C D
Colors: 1, 2, 3

4 Agent D sends (nogood!, D, {xc→ 3}) to C

Agent Current Value Agent View Constraint List
A 2 {xB→ 1} xA 6= xB
B 1 /0 /0
C 3 {xA→ 2,xB→ 1} xC 6= xA,xC 6= xB,xC 6= 3
D 3 /0 xD 6= xC

Nebel, Lindner, Engesser – MAS 35 / 44



Example Trace

A
B

C D
Colors: 1, 2, 3

5 Agent C sends (nogood!, C, {xA→ 2}) to A

Agent Current Value Agent View Constraint List
A 2 {xB→ 1} xA 6= xB,xA 6= 2
B 1 /0 /0
C 3 {xB→ 1} xC 6= xA,xC 6= xB,xC 6= 3
D 3 /0 xD 6= xC
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Example Trace

A
B

C D
Colors: 1, 2, 3

6 Agent A sets value to 3 and sends ok? to C

Agent Current Value Agent View Constraint List
A 3 {xB→ 1} xA 6= xB,xA 6= 2
B 1 /0 /0
C 3 {xA→ 3,xB→ 1} xC 6= xA,xC 6= xB,xC 6= 3
D 3 /0 xD 6= xC
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Example Trace

A
B

C D
Colors: 1, 2, 3

7 Agent C sets value to 2 and sends ok? to D

Agent Current Value Agent View Constraint List
A 3 {xB→ 1} xA 6= xB,xA 6= 2
B 1 /0 /0
C 2 {xA→ 3,xB→ 1} xC 6= xA,xC 6= xB,xC 6= 3
D 3 {xC→ 2} xD 6= xC
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Loops

A
B

C

Colors: 1, 2, 3

1 A, B, and C set their variables to 1 and send ok?
2 A, B, and C set their variables to 2 and send ok?
3 A, B, and C set their variables to 1 and send ok?
4 . . .
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Avoiding Loops

Postulate an order over the agents (e.g., IDs). Based on
that order, e.g., a link always goes from a higher-order to a
lower-order agent.

A
B

C

Colors: 1, 2, 3

1 A, B, and C set their variables to 1, A and B send ok?
2 B and C set their variables to 2, B sends ok?
3 C sets its variable to 3
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The empty Nogood

Theorem (see [2])
The CSP is unsatisfiable iff the empty Nogood is generated.

Example of an empty nogood:

A
B

Colors: 1

1 A and B set their variables to 1, A sends ok?
2 B sends (nogood!, xA→ 1)
3 A generates a nogood, and as A’s agent view is empty, the

generated nogood is empty as well.
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Summary and Outlook

This time
Constraint Satisfaction Problem & Backtracking algorithm
Distributed Constraint Satisfaction Problem & Synchronous
and Asynchronous Backtracking

Next time
Agents express preferences by numbers⇒Optimal
assigments using Auctions & Markets
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