
Multi-Agent Systems

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Felix Lindner, and Thorsten Engesser
Summer Term 2017

Course outline

1 Introduction
2 Agent-Based Simulation
3 Agent Architectures
4 Beliefs, Desires, Intentions

The GOAL Agent Programming Language
Introduction to Modal Logics
Epistemic Logic
BDI Logic

5 Norms and Duties
6 Communication and Argumentation
7 Coordination and Decision Making

Nebel, Lindner, Engesser – MAS 2 / 24

BDI Agent

function BDI-Agent(percept)
global beliefs,desires, intentions
beliefs← Update-Belief(beliefs,percept)
desires← Options(beliefs, intentions)
intentions← Filter(beliefs, intentions,desires)
action← Means-End-Reasoning(intentions)
beliefs← Update-Belief(action)
return action

end function

BDI agents start out with some beliefs and intentions.
Intentions are goals the agent has actually chosen to bring
about (can be adopted and dropped).
Beliefs and intentions constrain what the agent desires.
Together, B, D, and I determine the agent’s future intentions.

Nebel, Lindner, Engesser – MAS 3 / 24

Signatures of main processes

The alternatives for action (options) for an agent is a set of
desires dependent on the agent’s beliefs and its intentions:

options : 2Bel×2Int → 2Des

To select between competing options, an agent uses a filter
function. This choice depends on the agent’s beliefs,
current options (desires), and intentions:

filter : 2Bel×2Des×2Int → 2Int

⇒Prior intentions serve as input! They provide a filter of
admissibility for options, and thereby “provide a [. . .]
purpose for deliberation, rather than merely a general
injunction to do the best.” (Bratman, 1987, p. 33)

Nebel, Lindner, Engesser – MAS 4 / 24

Intentions: Main properties

Intentions drive means-ends reasoning: If I adopt an
intention, I will attempt to achieve it.
Intentions persist: Once adopted they will not be dropped
until achieved, deemed unachievable, or reconsidered.
Intentions constrain future deliberation: Filter of
admissibility. Options inconsistent with current intentions
will not be entertained.
Intentions influence beliefs upon which future practical
reasoning is based: Rationality requires that I believe that I
can achieve my intentions.

Nebel, Lindner, Engesser – MAS 5 / 24

Comparison: Intention vs. Desire

Desires, similar to intentions, are states of affairs
considered for achievement (or actions considered for
execution), i.e., basic preferences of an agent.
Unlike desires, intentions involve a commitment to bringing
them about.
Unlike desires, intentions must be consistent.

(Bratman, 1990, after Wooldridge, p. 67)
My desire to play basketball this afternoon is merely a potential
influence of my conduct this afternoon. It must vie with my other
relevant desires [. . .] before it is settled what I will do. In contrast,
once I intend to play basketball this afternoon, the matter is
settled: I normally need not continue to weigh the pros and cons.
When the afternoon arrives, I will normally just proceed to
execute my intentions.

Nebel, Lindner, Engesser – MAS 6 / 24

Role in explanations

“I want to have some icecream, and I believe there is
icecream in the freeze, and I choose to have some
icecream, therefore, I go to the freeze to get some
icecream.”
Each of these three clauses constitutes an adequate
explanation.
Beliefs, desires, and intentions are reason-giving forces.

Nebel, Lindner, Engesser – MAS 7 / 24

BDI Frameworks

Just to name a few
Jason: http://jason.sourceforge.net/
3APL: https://en.wikipedia.org/wiki/3APL
2APL: http://apapl.sourceforge.net/
JADEX: http://vsis-www.informatik.uni-hamburg.
de/projects/jadex/
GOAL: https://goalapl.atlassian.net/wiki

Different technologies, e.g., Prolog-style knowledge bases
vs. XML files vs. Java Objects
Different formalizations of BDI, e.g., AgentSpeak, GOAL

Nebel, Lindner, Engesser – MAS 8 / 24

http://jason.sourceforge.net/
https://en.wikipedia.org/wiki/3APL
http://apapl.sourceforge.net/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
https://goalapl.atlassian.net/wiki

Cognitive Agents in GOAL

GOAL emphasizes programming cognitive agents.
Cognitive agents maintain a cognitive state that consists of
knowledge and goals.

Knowledge: Facts the agent believes are true.
Goals: Facts the agent wants to be true.

Cognitive state is represented in some knowledge
representation (KR) language.
Cognitive agents derive their choice of action from their
knowledge and goals.

Nebel, Lindner, Engesser – MAS 9 / 24

Example: The Vacuum World

Percepts: dirt, orientation (N, S, E, W)
Knowledge: In/2, dirt/0, clean/0. initial KB: In(0, 0), ¬clean
Goal: clean [Note: clean cannot be perceived but must be
inferred!]
Actions: suck, step forward, turn right (90◦)

Nebel, Lindner, Engesser – MAS 10 / 24

Programming language GOAL

Mind-body metaphor:
Agents (mind) are
connected to
controllable entities
(body) living in some
environment.
Agents receive percepts
from the environment
through their controlled
entities.
Agents decide what the
controlled entities will
do.

Fig.: Source [1]

Controlled entities: A car in a Nagel-Schreckenberg-
Simulation, a bot in Unreal Tournament, a robot, . . .

Nebel, Lindner, Engesser – MAS 11 / 24

GOAL Execution Cycle

Nebel, Lindner, Engesser – MAS 12 / 24

Knowledge-based Systems: Motivation

printColor(snow) :- !, write(“It’s white”).
printColor(grass) :- !, write(“It’s green”).
printColor(soccerGround) :- !, printColor(grass).
printColor(X) :- write(“Hello world”).

versus
color(snow, white).
color(grass, green).
color(X, Y) :- madeOf(X, Z), color(Z, Y).
madeOf(soccerGround, grass).
printColor(X) :- color(X, Y), !, write(“It’s “), write(Y), write(“.”).
printColor(X) :- write(“Hello world”).

⇒Single- vs. multi-purpose, Cognitive penetrability

Example originally from Brachmann & Levesque (2004)
Nebel, Lindner, Engesser – MAS 13 / 24

Declarative Knowledge Bases

Classical formalism for knowledge representation:
First-Order Logic (FOL)
Ontological assumption: World consist of objects and
relations between these objects.
FOL syntax

Predicate Symbols: Beautiful/1, MotherOf/2, Between/3
Terms:

Constant Symbols: john, mary, cat-7
Function Symbols: f, g, ...
Variables: x, y, ...

Quantifiers: ∀,∃
Connectives: ∧,∨,¬,→, ...

“Maria is the mother of John’s (only) girlfriend.”
motherOf (maria,girlfriend(john))
∀X [girlfriend(X , john)→motherOf (maria,X)]

Nebel, Lindner, Engesser – MAS 14 / 24

FOL Semantics

Structures: A = (U, I)
Variables and Constants: I(c) ∈ U
Function Symbols (n-ary): I(f) : Un→ U
Predicate Symbols (n-ary): I(P)⊆ Un

Example
A1 = (U1 = {maria,susi, john}, I1), I1(maria) =
maria, I1(susi) = susi, I1(john) = john, I1(girlfriend) = {john 7→
susi}, I1(motherOf) = {(maria,susi)}
A2 = (U2 = U1, I2) similar to A1 but
I2(motherOf) = {(maria, john)}
We want to be able to say that structure A1 is a model for
the formula motherOf (maria,girlfriend(john)) and A2 is not.

Nebel, Lindner, Engesser – MAS 15 / 24

Models and Satisfiability

A |= P(t1, . . . , tn) iff. (I(t1), . . . , I(tn)) ∈ I(P)
A |= ¬ϕ iff not A |= ϕ

A |= (ϕ ∧ψ) iff A |= ϕ and A |= ψ

A |= (ϕ ∨ψ) iff A |= ϕ or A |= ψ (or both)
A |= ∃x(ϕ) iff A[x/d] |= ϕ for some d ∈ U
A |= ∀x(ϕ) iff A[x/d] |= ϕ for all d ∈ U

A is a model of ϕ iff A |= ϕ .
ϕ is satisfiable iff A |= ϕ for some A.
ϕ is valid iff A |= ϕ for all A.
ϕ entails ψ iff every model of ϕ is also a model of ψ .

Nebel, Lindner, Engesser – MAS 16 / 24

Prolog

GOAL uses Prolog as knowledge representation formalism
Based on Horn fragment of First-Order Logic, programs
evaluated by logical proof. Prolog adds procedures for
arithmetics and input/output handling.

Knowledge Base
Rules: motherOf(maria, X) :- girlfriend(X, john).
Facts: girlfriend(susi, john).

Sample Queries
? :- motherOf(maria, susi). yes
? :- motherOf(maria, bernie). no
? :- motherOf(maria, C). C = susi.
? :- motherOf(maria, susi), not(motherOf(maria, bernie)).
yes

Nebel, Lindner, Engesser – MAS 17 / 24

Prolog: SDL Resolution by Example (Idea)

Program: motherOf(maria, X) :- girlfriend(X, john).
girlfriend(susi, john).
Query: ? :- motherOf(maria, susi).
Remember Entailment: The program entails the query iff
every model of the program is a model of the query,
Program |= Query.

I.e., none of the program’s models is a model of the
negation of the query.
I.e., there is no model for the conjunction of the program
and the negation of the query.
Thus, the entailment can be proven by showing that
Program∧¬Query |=⊥

Nebel, Lindner, Engesser – MAS 18 / 24

Prolog: SDL Resolution by Example (Proof)

Program: motherOf(maria, X) :- girlfriend(X, john).
girlfriend(susi, john).
Query: ? :- motherOf(maria, susi).
Show: {¬gi(X , j)∨mo(m,X),gi(s, j),¬mo(m,s)} |=⊥

Nebel, Lindner, Engesser – MAS 19 / 24

Prolog: SDL Resolution by Example (Proof)

Program: motherOf(maria, X) :- girlfriend(X, john).
girlfriend(susi, john).
Query: ? :- motherOf(maria, susi).
Show: {¬gi(X , j)∨mo(m,X),gi(s, j),¬mo(m,s)} |=⊥

1 ¬mo(m,s),¬gi(X , j)∨mo(m,X) ;[X/s] ¬gi(s, j)
2 ¬gi(s, j),gi(s, j) ;[] ⊥

⇒There is no structure that is a model for both the program
and the negation of the query.⇒Every model of the
program will not be a model for the negation of the query.
⇒Every model of the program will be a model of the
unnegated query.⇒The program entails the query.

Nebel, Lindner, Engesser – MAS 19 / 24

Prolog: Queries with Variables

Program: motherOf(maria, X) :- girlfriend(X, john).
girlfriend(susi, john).
Query: ? :- motherOf(maria, C).
Idea: Ask for answer(C) :- motherOf(maria, C)
{¬gi(X , j)∨mo(m,X),gi(s, j),¬mo(m,C)∨answer(C)}

Nebel, Lindner, Engesser – MAS 20 / 24

Prolog: Queries with Variables

Program: motherOf(maria, X) :- girlfriend(X, john).
girlfriend(susi, john).
Query: ? :- motherOf(maria, C).
Idea: Ask for answer(C) :- motherOf(maria, C)
{¬gi(X , j)∨mo(m,X),gi(s, j),¬mo(m,C)∨answer(C)}

1 ¬mo(m,C)∨answer(C),¬gi(X , j)∨mo(m,X) ;[C/X]
answer(X)∨¬gi(X , j)

2 answer(X)∨¬gi(X , j),gi(s, j) ;[X/s] answer(s)

Nebel, Lindner, Engesser – MAS 20 / 24

Back to GOAL

We will try to avoid programming in Prolog, but we will make
use of it:

Adding facts to the agent’s KB: insert(at(1, 2))
Removing facts from the agent’s KB: delete(at(1,1))
Adding goals to the agent’s KB: adopt(at(7,7))
Asking what the agent believes about some fact:

Am I at position (1,1)? bel(at(1, 1))
Where am I? bel(at(X, Y))

Writing rules:
forall bel(at(X1, Y1)), percept(at(X2, Y2)) then
delete(at(X1, Y1) + insert(at(X2, Y2)).
if bel(at(1, 1), lectureAt(1, 1)), not(goal(enlightened)) then
sleep.
If goal(at(X1, Y1)), bel(at(X1, Y2), Y2 > Y1, D is Y2 - Y1)
then goNorth(D).

For more, study the GOAL manual [1],
https://goalapl.atlassian.net/wiki/.

Nebel, Lindner, Engesser – MAS 21 / 24

https://goalapl.atlassian.net/wiki/

Live Programming

We want to do first steps towards programming an agent for
the Wumpus world.

1 Ontology Design
1 Identify percepts
2 Identify environment actions
3 Design an ontology to represent the agent’s environment
4 Identify the goals of agents

2 Strategy Design
1 Write event rules
2 Write action specifications
3 Determine action selection strategy
4 Write decision rules

Nebel, Lindner, Engesser – MAS 22 / 24

Course outline

1 Introduction
2 Agent-Based Simulation
3 Agent Architectures
4 Beliefs, Desires, Intentions

The GOAL Agent Programming Language
Introduction to Modal Logics
Epistemic Logic
BDI Logic

5 Norms and Duties
6 Communication and Argumentation
7 Coordination and Decision Making

Nebel, Lindner, Engesser – MAS 23 / 24

Literature

Hindriks, K. V., Programming Cognitive Agents in GOAL, Technical
Manual, 2017, https://goalapl.atlassian.net/wiki/.

Brachmann, R. J. & Levesque, H. J., Knowledge Representation and
Reasoning, 2004, Morgan Kaufmann Publishers.

Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach, second edition, Prentice Hall, 2003.

Nebel, Lindner, Engesser – MAS 24 / 24

