Multi-Agent Systems

B. Nebel, F. Lindner, T. Engesser University of Freiburg
Summer Semester 2016 Department of Computer Science

Exercise Sheet 3
Due: May 23th, 2016, 10:00

The simulation which we will use in the following exercises was developed by Thomas Bolander, Andreas Garnzes,
Martin Holm Jensen, and Mikkel Birkegaard Andersen for an advanced course in planning and multi-agent systems
at the Technical University of Denmark. It is inspired by a real-world application, in which robots are used to
transport resources (beds, equipment, ...) in a hospital. In the simulation, an agent can only move boxes which
match the agent’s color. Colors represent different transportation capabilities of the agents. Also, there are
different types of boxes. The objective is to have a suitable box delivered to each goal field.

@ ™ O Actionstaken: 31| Time used: 9,16s | FPS: 23,7 /22,5 (Current/Average)

Figure 1: A problem instance. Agents are represented as circles (with a unique id from 0 to 9), boxes and goal
fields as colored squares. The type of a box is indicated by an upper case letter, and the box type that is required
to be delivered to a goal field by a lower case letter (e.g., a box A is required for a goal field a).

Since the simulation is written in Java, you will need to have the Java Runtime Environment installed (e.g., in
Ubuntu you can do this via sudo apt-get install openjdk-8-jre). If the command java -version runs in
your console, everything should be set up. Agents will be implemented using our multi-agent framework.
Important note: Since communication with the simulation is done via standard in-/output, using print state-
ments will break your agents. Instead, use the thread-safe printout method provided by the class SokobanAgent.
Note also that our framework already runs each agent in a dedicated thread. Real-time communication between
the agents can be realized via the SokobanMessaging actuator.

Exercise 3.1 (Distributed Constraint Satisfaction I, 3+3)

We want to uniquely assign each box to ezxactly one agent who can reach the box and has the same color.
This means that in the end each agent has exactly one or zero boxes assigned to. If this is not possible
for some problem instance, we will consider it unsolvable for now. The related problem of assigning boxes
to goal fields will not be relevant for this exercise.

(a) Formalize the problem of box allocation for the instance given in Figure [1| as distributed CSP.

(b) Solve the CSP on paper using asynchronous backtracking. Write down all intermediate steps,
including sent messages and changed values of current_value, agent_view, and constraint_list.

Exercise 3.2 (Distributed Constraint Satisfaction II, 6+3)

(a) Implement the allocation of boxes to agents using asynchronous backtracking, starting with the
provided template ex03/sokoban.py. Note that your agents must first figure out which boxes they
can reach. Each message sent during backtracking should also be printed out to the console. Your
agents should be able to find allocations for all the levels in ex03/sokoban-levels/.

(b) Implement the agents moving to their respective boxes, once they are assigned.

