Multi-Agent Systems

B. Nebel, F. Lindner, T. Engesser University of Freiburg
Summer Semester 2016 Department of Computer Science

Exercise Sheet 2
Due: May 9th, 2016, 10:00

Exercise 2.1 (Swarm Formation, 34+-3+3)

Your task in this exercise is to implement some of the swarm formation algorithms by Sugihara
and Suzukiﬂ For your convenience, an implementation template (ex02/formation.py) is already
provided in your group’s repository. The idea is to control the whole group of agents using the
keyboard. Currently, the user can instruct all the agents to randomly walk around (by pressing
W), or to freeze (by pressing SPACE). Furthermore, it is possible to select and deselect agents
with the mouse. Selected agents can later be used as designated corner agents of a polygon.

(a) Implement the CIRCLE and FILLCIRCLE behaviors. The user should be able to trigger them
by pressing respectively R and F on the keyboard.

(b) Implement the CONTRACTION and FILLPOLYGON behaviors. The user should be able to
trigger them by pressing respectively C and P on the keyboard (e.g., after having selected
the corner agents — which will remain on their places — from a circle of agents).

(c¢) Experiment with the different controllers that are available in the framework (UnicycleCon-
troller, DifferentialController and KilobotController), as well as different settings for the
parameters D and J, in order to optimize the swarm behavior. If necessary, try to add a
simple collision avoidance behavior. Note that for Exercise 2.1, you only have to commit
one agent implementation (including all the behaviors), which does not have to be perfect!
Explain your implementation choices and briefly describe the problems you encountered.

Exercise 2.2 (Gradient Formation and Localization, 3+3)

The algorithms from Exercise 2.1 assume that each agent knows the relative position of every other
agent. Usually, in robotics this assumption does not hold. In the swarm formation approach pro-
posed by Rubenstein et al.E| robots have to communicate (by broadcasting and receiving messages)
in order to localize themselves within the bulk of agents. Your task in this exercise is to implement
gradient formation and localization in 2D-coordinates, starting from the implementation template
ex02/kilobot.py in your repository.

(a) Implement gradient formation (lecture 4, slide 11) for the agents. Indicate the agents who
already know their gradient value by giving them a different (inner) color. If such an agent
is clicked on, its gradient value should be printed out to the console.

(b) Implement the agents’ 2D-localization via trilateration (lecture 4, slide 12). The optimization
problem can be efficiently solved by applying the nonlinear least squares method, e.g., using
ScIPY’s function curve_fit. You can find more information about this on the web. E| El El
Run the simulation until all of the agents have a position estimate. Then make a plot of the
estimated and actual positions of all the agents (and commit it to your repository, alongside
the implementation).

1http ://dx.doi.org/10.1002/ (SICI)1097-4563(199603)13:3<127::AID-ROB1>3.0.C0;2-U
%http://science.sciencemag.org/content/345/6198/795
Shttp://gis.stackexchange.com/questions/40660/trilateration-algorithm-for-n-amount-of-points
4https://en.wikipedia.org/wiki/Non-linear_least_squares
Shttp://www.walkingrandomly.com/?p=5215


http://dx.doi.org/10.1002/(SICI)1097-4563(199603)13:3<127::AID-ROB1>3.0.CO;2-U
http://science.sciencemag.org/content/345/6198/795
http://gis.stackexchange.com/questions/40660/trilateration-algorithm-for-n-amount-of-points
https://en.wikipedia.org/wiki/Non-linear_least_squares
http://www.walkingrandomly.com/?p=5215

