Game Theory

5. Complexity

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Robert Mattmüller May 24th, 2016

UNI

Motivation

Search Problems

Complexity Results

Motivation

Search Problems

Results

Summary

Motivation: We already know some algorithms for finding Nash equilibria in restricted settings from the previous chapter, and upper bounds on their complexity.

- For finite zero-sum games: polynomial-time computation.
- For general finite two player games: computation in NP.

Question: What about lower bounds for those cases and in general?

Approach to an answer: In this chapter, we study the computational complexity of finding Nash equilibria.

Finding Nash Equilibria as a Search Problem

UNI FREIBURG

Definition (The problem of computing a Nash equilibrium)

Nash

Given: A finite two-player strategic game *G*.

Find: A mixed-strategy Nash equilibrium (α, β) of G.

Motivation

Search Problems

> Complexity Results

Summary

Remarks:

- No need to add restriction "...if one exists, else 'fail", because existence is guaranteed by Nash's theorem.
- The corresponding decision problem can be trivially solved in constant time (always return "true").
 Hence, we really need to consider the search problem version instead.

Finding Nash Equilibria as a Search Problem

UNI

Motivation

In this form, Nash looks similar to other search problems, e.g.:

SAT

Given: A propositional formula φ in CNF.

Find: A truth assignment that makes φ true, if one exists,

else 'fail'.

Note: This is the search version of the usual decision problem.

Search Problems

Complexity Results

2 Search Problems

Motivation

Search Problems

Complexity Results

Search Problems

A search problem is given by a binary relation R(x, y).

Definition (Search problem)

A search problem is a problem that can be stated in the following form, for a given binary relation R(x,y) over strings:

SEARCH-R

Given: x.

Find: Some y such that R(x,y) holds, if such a y exists,

else 'fail'.

Motivatio

Search Problems

Complexity Results

Complexity Classes for Search Problems

FREIBU

Some complexity classes for search problems:

- **FP**: class of search problems that can be solved by a deterministic Turing machine in polynomial time.
- FNP: class of search problems that can be solved by a nondeterministic Turing machine in polynomial time.
- **TFNP**: class of search problems in **FNP** where the relation R is total, i. e., $\forall x \exists y . R(x, y)$.
- PPAD: class of search problems that can be polynomially reduced to END-OF-LINE.
 (PPAD: Polynomial Parity Argument in Directed Graphs)

To understand **PPAD**, we need to understand what the **END-OF-LINE** problem is.

Motivation

Search Problems

Complexity Results

Definition (END-OF-LINE instance)

Consider a directed graph $\mathscr G$ with node set $\{0,1\}^n$ such that each node has in-degree and out-degree at most one and there are no isolated vertices. The graph $\mathscr G$ is specified by two polynomial-time computable functions π and σ :

- $\pi(v)$: returns the predecessor of v, or \perp if v has no predecessor.
- $\sigma(v)$: returns the successor of v, or \perp if v has no successor.

In \mathscr{G} , there is an arc from v to v' if and only if $\sigma(v) = v'$ and $\pi(v') = v$.

Motivation

Search Problems

Complexity Results

The End-of-Line Problem

FRE —

Definition (END-OF-LINE instance (ctd.))

We call a triple (π, σ, v) consisting of such functions π and σ and a node v in $\mathscr G$ with in-degree zero (a "source") an END-OF-LINE instance.

With this, we can define the **END-OF-LINE problem**:

Definition (END-OF-LINE problem)

END-OF-LINE

Given: An End-of-Line instance (π, σ, v) .

Find: Some node $v' \neq v$ such that v' has out-degree zero

(a "sink") or in-degree zero (another "source").

Motivation

Search Problems

Complexity Results

The End-of-Line Problem

UNI FREIBURG

Example (END-OF-LINE)

given source $\sinh \neq v$

Motivation

Search Problems

Complexity Results

Comparison of Search Complexity Classes

UNI FREIBURG

Motivation

Search Problems

Complexity Results

Summary

Relationship of different search complexity classes:

 $FP \subset PPAD \subset TFNP \subset FNP$

Compare to upper runtime bound that we already know: Lemke-Howson algorithm has exponential time complexity in the worst case.

3 Complexity Results

Motivation

Search Problems

Complexity Results

PPAD-Completeness of Nash

Theorem (Daskalakis et al., 2006)

Nash is **PPAD**-complete.

The same holds for k-player instead of just two-player Nash. \square

Thus, Nash is presumably "simpler" than the Sat search problem, but presumably "harder" than any polynomial search

Search Problems

Complexity Results

Summary

problem.

FNP-Completeness of 2ND-Nash

FREIBU

Another search problem related to Nash equilibria is the problem of finding a second Nash equilibrium (given a first one has already been found). As it turns out, this is at least as hard as finding a first Nash equilibrium.

Definition (2ND-NASH problem)

2ND-NASH

Given: A finite two-player game G and a mixed-strategy

Nash equilibrium of *G*.

Find: A second different mixed-strategy Nash equilibrium

of G, if one exists, else 'fail'.

Theorem (Conitzer and Sandholm, 2003)

2ND-NASH is FNP-complete.

Motivation

Search Problems

Complexity Results

Some Further Hardness Results

FREIBL

Theorem (Conitzer and Sandholm, 2003)

For each of the following properties P^{ℓ} , ℓ = 1,2,3,4, given a finite two-player game G, it is **NP**-hard to decide whether there exists a mixed-strategy Nash equilibrium (α, β) in G that has property P^{ℓ} .

P¹: player 1 (or 2) receives a payoff ≥ k for some given k. ("Guaranteed payoff problem")

 $P^2: U_1(\alpha,\beta) + U_2(\alpha,\beta) \ge k$ for some given k. ("Guaranteed social welfare problem")

 P^3 : player 1 (or 2) plays some given action a with prob. > 0.

 P^4 : (α, β) is Pareto-optimal, i. e., there is no strategy profile (α', β') such that

■
$$U_i(\alpha', \beta') \ge U_i(\alpha, \beta)$$
 for both $i \in \{1, 2\}$, and
■ $U_i(\alpha', \beta') > U_i(\alpha, \beta)$ for at least one $i \in \{1, 2\}$.

Motivation

Search Problems

Complexity Results

품

Motivation

Search Problems

Complexity Results

- PPAD is the complexity class for which the END-OF-LINE problem is complete.
- Finding a mixed-strategy Nash equilibrium in a finite two-player strategic game is PPAD-complete.
- FNP is the search-problem equivalent of the class NP.
- Finding a second mixed-strategy Nash equilibrium in a finite two-player strategic game is FNP-complete.
- Several decision problems related to Nash equilibria are NP-complete:
 - guaranteed payoff
 - guaranteed social welfare
 - inclusion in support
 - Pareto-optimality of Nash equilibria