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We know: In finite strategic games, mixed-strategy Nash Motivation
equilibria are guaranteed to exist.

We don’t know: How to systematically find them?

Challenge: There are infinitely many mixed strategy
profiles to consider. How to do this in finite time?

This chapter:

Computation of mixed-strategy Nash equilibria for
finite zero-sum games.

Computation of mixed-strategy Nash equilibria for
general finite two player games.
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Linear Programming

Linear Pro-
gramming

Digression:
We briefly discuss linear programming because we will use
this technique to find Nash equilibria.

Goal of linear programming:

Solving a system of linear inequalities over n real-valued
variables while optimizing some linear objective function.
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Linear Programming

Example

Production of two sorts of items. Objective: Maximize profit.

Cutting | Assembly | Postproc. | Profit per item

(x) sort 1 25 60 68 30
(v) sort 2 75 60 34 40
perday | <450 <480 < 476 maximize!

Goal: Find numbers of pieces x of sort 1 and y of sort 2 to be
produced per day such that the resource constraints are met
and the objective function is maximized.
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Linear Programming

Example (ctd., formalization)

x>0,y>0
25x +75y <450 (ory <6—1/3x)
60x +60y <480 (ory <8—x)
68x +34y <476 (ory <14 —2x)
maximize z = 30x + 40y

Inequalities (1)—(4): Admissible solutions
(They form a convex set in R2.)

Line (5): Objective function
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Example (ctd., visualization)

y,\
14
13
12
11
10

©

- N WHUO N

Linear Pro-
x>0, y>0 gramming
y<6-1/3 x
y<8-x
y<14-2x

max z =30x +40y

0

May 10th, 2016

1234567 8 9101112131415161718192021 X

B. Nebel, S. Wélfl, R. Mattmdiller — Game Theory 10/36



Linear Programming

Example (ctd., visualization)

y,

SN W Ao N ®

Linear Pro-

J A x>0, y>0 gramming
14

1831 .
101

y<6-1/3 x

y<8-x

y<14—2x
max z =30x +40y

0

12345678 9101112131415161718192021 X

May 10th, 2016 B. Nebel, S. Wélfl, R. Mattmdiller — Game Theory 10/36



Linear Programming
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Linear Programming

Definition (Linear program)
A linear program (LP) in standard from consists of Linear Pro-
n real-valued variables x;; n coefficients b;; .
m constants ¢;; n-m coefficients ajj;
m constraints of the form
n
G <Y apx,

i=1

and an objective function to be minimized (x; > 0)
n
ZbiX,'.
i=1
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Solution of an LP: Lnear b
assignment of values to the x; satisfying the constraints and
minimizing the objective function.

Remarks:

Maximization instead of minimization: easy, just change
the signs of all the b;’s,i=1,...,n.

Equalities: x + y < c if and only if there is a z > 0 such that
X+y+z=c (zis called a slack variable).
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Solution algorithms:

Usually, one uses the simplex algorithm L
) . . inear F’ro—
(which is worst-case exponentiall). gramming

There are also polynomial-time algorithms such as
interior-point or ellipsoid algorithms.

Tools and libraries:
Ip_solve
CLP
GLPK
CPLEX
gurobi
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Mixed-Strategy Nash Equilibria in Finite

Zero-Sum Games
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We start with finite zero-sum games for two reasons: Zero-Sum

Games

They are easier to solve than general finite two-player
games.

Understanding how to solve finite zero-sum games
facilitates understanding how to solve general finite
two-player games.
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In the following, we will exploit the zero-sum property of a
game G when searching for mixed-strategy Nash equilibria.
For that, we need the following result. Zero-Sum

Games

Proposition

Let G be a finite zero-sum game. Then the mixed extension of
G is also a zero-sum game.

Proof.
Homework. m
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Let G be a finite zero-sum game with mixed extension G'.
Zero-Sum
Games

Then we know the following:
Previous proposition implies: G’ is also a zero-sum game.
Nash’s theorem implies: G’ has a Nash equilibrium.
Maximinimizer theorem + (1) + (2) implies: Nash equilibria
and pairs of maximinimizers in G’ are the same.
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Zero-Sum

Consequence: Games
When looking for mixed-strategy Nash equilibria in G, it is
sufficient to look for pairs of maximinimizers in G'.

Method: Linear Programming
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Approach:
Let G = (N, (Ai)ien, (Ui)ien) be a finite zero-sum game:
N={1,2}.
Ay and A, are finite.
Us(at, B) = —Us(a, B) for all @ € A(A1), B € A(Ay).
Player 1 looks for a maximinimizer mixed strategy a.
For each possible o of player 1:

Determine expected utility against best response of pl. 2.
(Only need to consider finitely many pure candidates for
best responses!)

Maximize expected utility over all possible o.
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Result: maximinimizer ¢ for player 1in G’ Zero Sum
(= Nash equilibrium strategy for player 1)

Analogously: obtain maximinimizer § for player 2 in G’
(= Nash equilibrium strategy for player 2)

With maximinimizer theorem: we can combine « and 3
into a Nash equilibrium.

May 10th, 2016 B. Nebel, S. Wolfl, R. Mattm(iller — Game Theory 21/36



Linear Program Encoding

UNI

)
&
2
Q
[*7]
4
[* 9

“For each possible a of player 1, determine expected utility
against best response of player 2, and maximize.”

Zero-Sum

translates to the following LP: Games

a(@ >0 forallac Ay

Y aa@) =

a€A1
=) a@)-ui(ab)>u forallbeA;
aeA1
Maximize u.
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Example (Matching pennies)

Zero-Sum

T | -1, 1 1,1 Games

Linear program for player 1:
Maximize u subject to the constraints

a(H) =0, a(T)

>0, o
a(H)—a(T) > u,
—o(H)+a(T) > u.

(H)+a(T) =1,

Solution: a(H) = a(T) =1/2,u=0.
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Remark: There is an alternative encoding based on the

observation that in zero-sum games that have a Nash Zero-Sum
equilibrium, maximinimization and minimaximization yield

the same result.

Idea: Formulate linear program with inequalities
Usi(a,B)<u forall a € Ay

and minimize u. Analogously for 3.
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For general finite two-player games, the LP approach
does not work.

Instead, use instances of the linear complementarity
problem (LCP):

General

Linear (in-)equalities as with LPs. Finke
Additional constraints of the form x; - y; =0 Games |

(or equivalently x; =0V y; = 0)
for variables X = {xy,...,xx} and Y = {y1,...,yx}, and
ie{1,....,k}.
no objective function.
With LCPs, we can compute Nash equilibria for arbitrary
finite two-player games.
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General Finite Two-Player Games

Let A; and A, be finite and let («, B) be a Nash equilibrium
with payoff profile (u,v). Then consider this LCP encoding:

May 10th, 2016

u—U+@a,B)>0 forallacA;
v—Us(a,b) >0 forallbe A,
(u—U(a,B))=0 forallac A
(v—Us(a,b)) =0 forallbe A,
a(@ >0 forall ace A;
) a@@)=1
acA

Bb)>0 forallbeA,
1
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General Finite Two-Player Games

Remarks about the encoding:
In (8) and (9): for instance,

a(a)-(u—Ui(a,p)) =0

General

if and only if Finite
Two-Player
Games

a(a) =0 or u—U(a,pB)=0.

This holds in every Nash equilibrium, because:
if a ¢ supp(a), then a(a) =0, and
if a € supp(a), then a € By(B), thus Ui (a, B) = u.

With additional variables, the above LCP formulation can
be transformed into LCP normal form.
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General Finite Two-Player Games

Theorem

A mixed strategy profile (a, B) with payoff profile (u,v) is a
Nash equilibrium if and only if it is a solution to the LCP
encoding over (o, 3) and (u, v).

General

Finite
Two-Player
P I’OOf Games

Nash equilibria are solutions to the LCP: Obvious
because of the support lemma.
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General Finite Two-Player Games

Theorem

A mixed strategy profile (a, B) with payoff profile (u,v) is a
Nash equilibrium if and only if it is a solution to the LCP
encoding over («, ) and (u,v). coneral
Finite
Two-Player

PI’OOf Games

Nash equilibria are solutions to the LCP: Obvious
because of the support lemma.

Solutions to the LCP are Nash equilibria: Let (o, 8,u, V)
be a solution to the LCP. Because of (10)—(13), a and 8
are mixed strategies.
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Proof (ctd.)

Solutions to the LCP are Nash equilibria (ctd.): Because
of (6), u is at least the maximal payoff over all possible
pure responses, and because of (8), u is exactly the
maximal payoff.

General
Finite
Two-Player
Games
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Proof (ctd.)

Solutions to the LCP are Nash equilibria (ctd.): Because
of (6), u is at least the maximal payoff over all possible
pure responses, and because of (8), u is exactly the
maximal payoff.

General
Finite

If a(a) > 0, then, because of (8), the payoff for player 1 Two-Player
against 3 is u. cames
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Proof (ctd.)

Solutions to the LCP are Nash equilibria (ctd.): Because
of (6), u is at least the maximal payoff over all possible
pure responses, and because of (8), u is exactly the
maximal payoff.

General
If a(a) > 0, then, because of (8), the payoff for player 1 Two Player
against 3 is u. cames
The linearity of the expected utility implies that o is a best

response to f3.
Analogously, we can show that 3 is a best response to o
and hence («, B) is a Nash equilibrium with payoff profile
(u,v).

O
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Solution Algorithm for LCPs

Naive algorithm:
Enumerate all (2" — 1) - (2™ — 1) possible pairs of support sets.

For each such pair (supp(a),supp(pB)):
Convert the LCP into an LP:
General

Linear (in-)equalities are preserved. Finite
Constraints of the form a(a) - (u— Uq(a,B)) =0 are Two-Player
replaced by a new linear equality:

u—U4(a,B) =0, if a € supp(ax), and
a(a) = 0, otherwise,
Analogously for B(b) - (v — Ua(cx, b)) = 0.
Objective function: maximize constant zero function.

Apply solution algorithm for LPs to the transformed
program.
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UNI

Runtime of the naive algorithm: O(p(n+m)-2™"™M), where
p is some polynomial.

Better in practice: Lemke-Howson algorithm. General
Complexity: owo-Player

May 10th, 2016

unknown whether LcpSoLve € P.

LcpSowve € NP is clear

(naive algorithm can be seen as a nondeterministic
polynomial-time algorithm).
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Summary
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Computation of mixed-strategy Nash equilibria for finite

zero-sum games using linear programs.

~» polynomial-time computation

Computation of mixed-strategy Nash equilibria for general

finite two player games using linear complementarity Summary
problem.

~ computation in NP.
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