

Mixed Strategies

randomize his actions.

Definition (Mixed strategy)

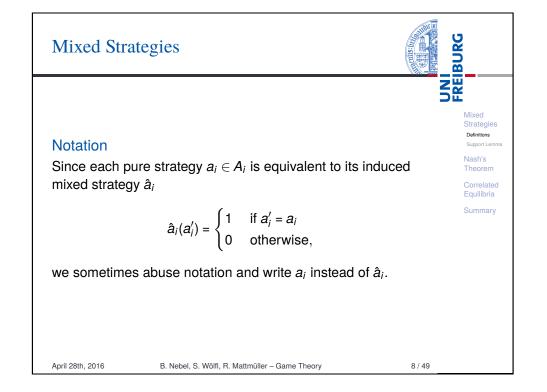
call them pure strategies.

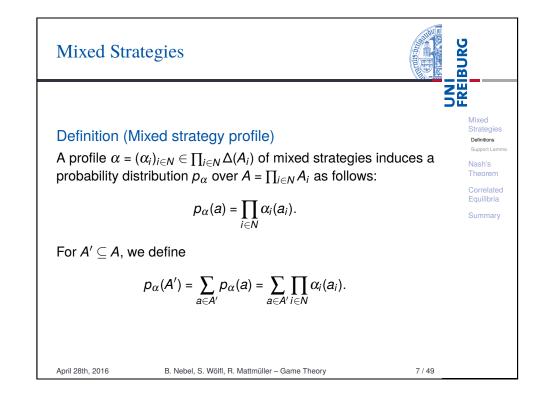
UNI FREIBURG A mixed strategy is a strategy where a player is allowed to Definitions Support Lemma Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a strategic game. Correlated A mixed strategy of player *i* in *G* is a probability distribution Summarv $\alpha_i \in \Delta(A_i)$ over player *i*'s actions. For $a_i \in A_i$, $\alpha_i(a_i)$ is the probability for playing a_i . Terminology: When we talk about strategies in A_i specifically, to distinguish them from mixed strategies, we sometimes also

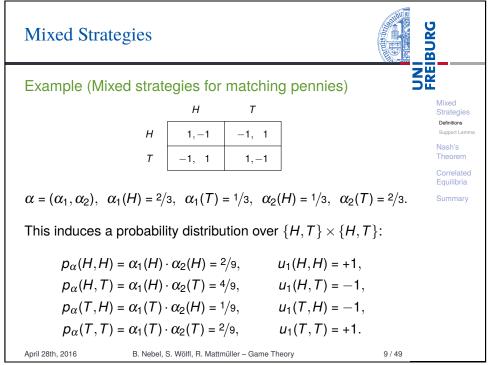
6/49

April 28th, 2016

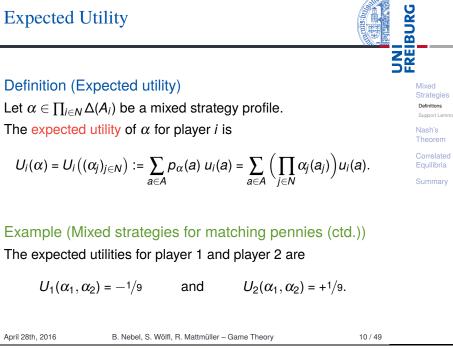
B. Nebel, S. Wölfl, R. Mattmüller - Game Theory

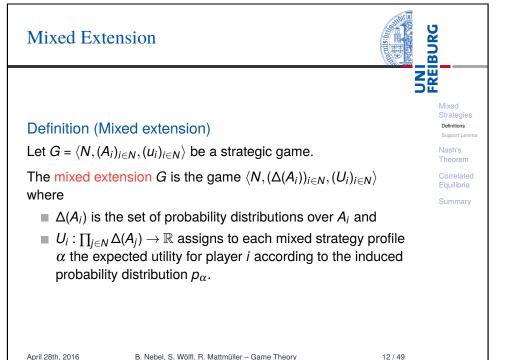






Expected Utility





UNI FREIBURG **Expected Utility Remark:** The expected utility functions U_i are linear in all mixed strategies. Mixed Definitions Proposition Let $\alpha \in \prod_{i \in N} \Delta(A_i)$ be a mixed strategy profile, $\beta_i, \gamma_i \in \Delta(A_i)$ Theorem mixed strategies, and $\lambda \in [0, 1]$. Then Equilibria $U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda)\gamma_i) = \lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda)U_i(\alpha_{-i}, \gamma_i).$ Moreover. $U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) \cdot U_i(\alpha_{-i}, a_i)$ Proof. Homework. April 28th, 2016 B. Nebel, S. Wölfl, R. Mattmüller - Game Theory 11/49

Support

Intuition:

- It does not make sense to assign positive probability to a strategy that is not a best response to what the other players do.
- Claim: A profile of mixed strategies α is a Nash equilibrium if and only if everyone only plays best responses to what the others play.

Definition (Support)

Let α_i be a mixed strategy.

The support of α_i is the set

 $supp(\alpha_i) = \{a_i \in A_i \mid \alpha_i(a_i) > 0\}$

of actions played with nonzero probability.

April 28th, 2016

B. Nebel, S. Wölfl, R. Mattmüller – Game Theory

UNI FREIBURG

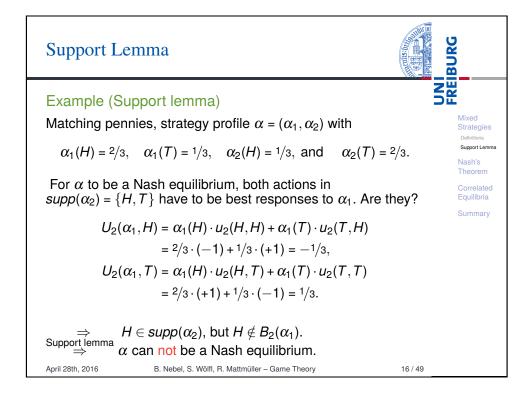
14/49

Mixed

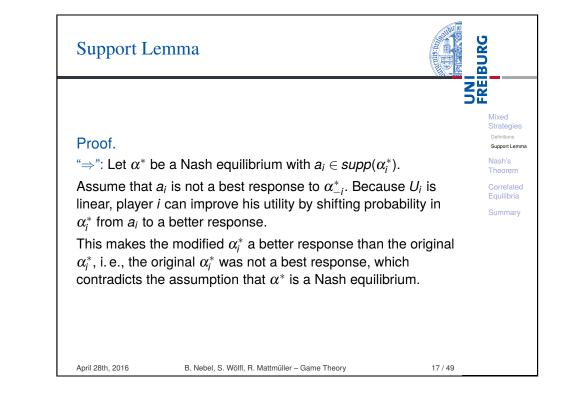
Definitions Support Lemma

Theorem

Equilibria

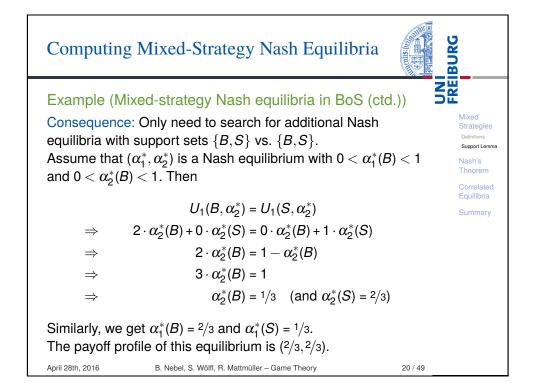


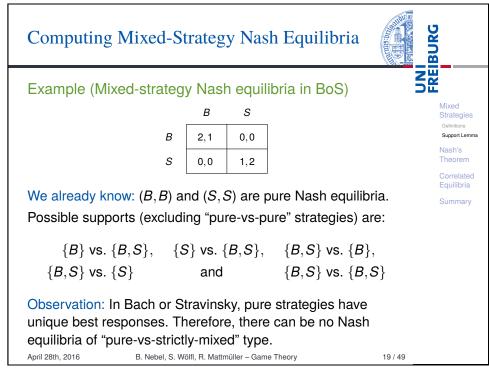
Support Le	mma	BURG
Then $\alpha^* \in \prod_{i \in G} G$ if and only it support of α_i^* For a single pl strategies-it d mixed strategy	port lemma) $_{i \in N}, (u_i)_{i \in N}$ be a finite strategic gan $_{iN}\Delta(A_i)$ is a mixed-strategy Nash equivation of the every player $i \in N$, every pure states a best response to α^*_{-i} . ayer–given all other players stick to the player of make a difference whether her plays any single pure port of the mixed strategy.	their mixed ne plays the
April 28th, 2016	B. Nebel, S. Wölfl, R. Mattmüller – Game Theory	15 / 49

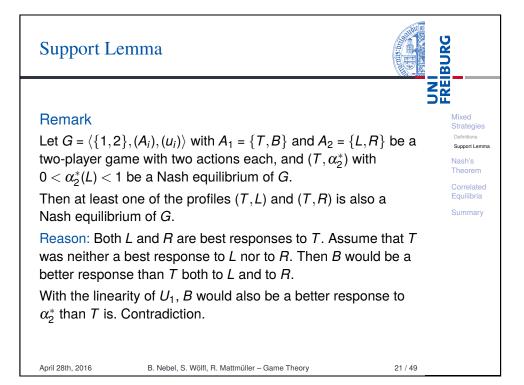


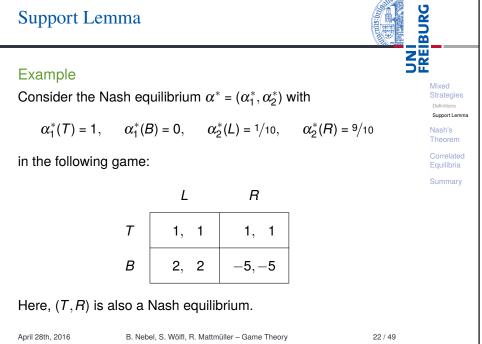
Support Lemma	BURG
	Mixed Strategies
Proof (ctd.) " \Leftarrow ": Assume that α^* is not a Nash equilibrium.	Definitions Support Lemma Nash's Theorem
Then there must be a player $i \in N$ and a strategy α'_i such that $U_i(\alpha^*_{-i}, \alpha'_i) > U_i(\alpha^*_{-i}, \alpha^*_i)$.	Correlated Equilibria
Because U_i is linear, there must be a pure strategy $a'_i \in supp(\alpha'_i)$ that has higher utility than some pure strategy $a''_i \in supp(\alpha^*_i)$.	Summary
Therefore, $supp(lpha_i^*)$ does not only contain best responses to	
α^*_{-i} .	
April 28th, 2016 B. Nebel, S. Wölfl, R. Mattmüller – Game Theory 18 / 49	

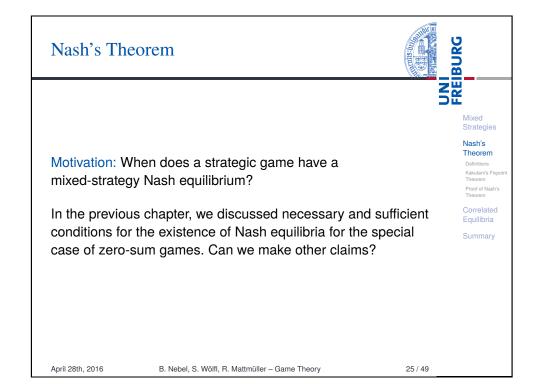
-SIC R

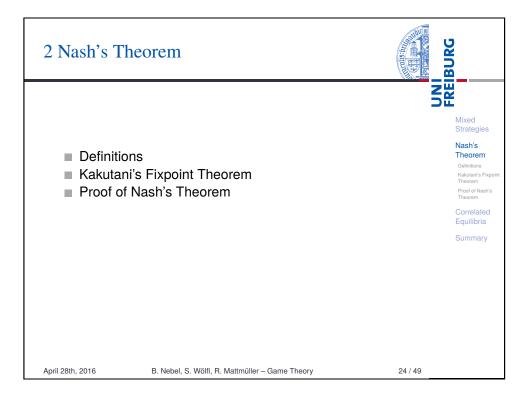


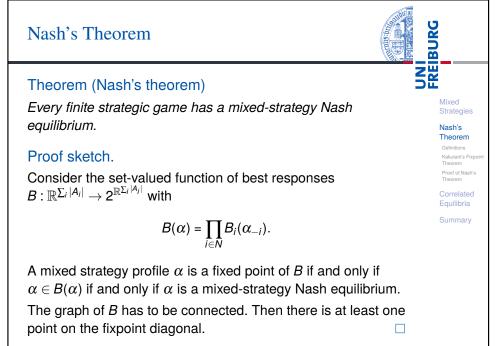










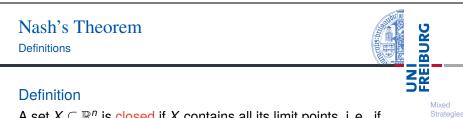


April 28th, 2016

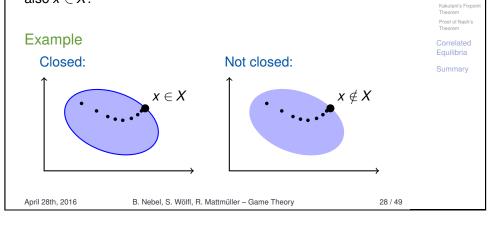
26 / 49

Nash's Theor	rem	BURG
	ormal proof: necessary mathematical definitions ection "Definitions"	Mixed Strategies Nash's Theorem Valutario Kalutario Froport Theorem Proor of Nash's
theorem (w	of a fixpoint theorem used to prove Nas ithout proof) ection "Kakutani's Fixpoint Theorem"	h's Correlated Equilibria Summary
	sh's theorem using fixpoint theorem ection "Proof of Nash's Theorem"	
April 28th, 2016	B. Nebel, S. Wölfl, R. Mattmüller – Game Theory	27 / 49



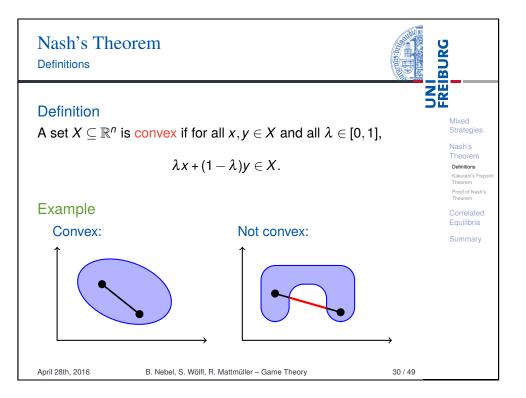


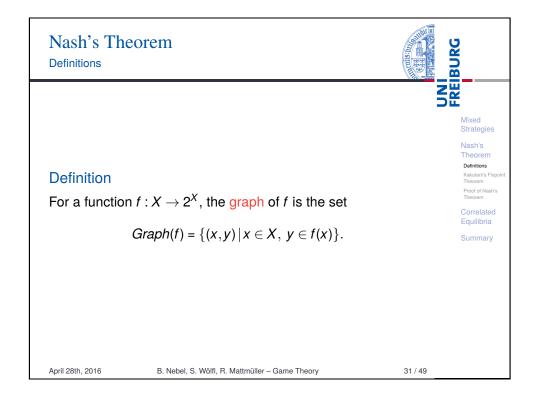
A set $X \subseteq \mathbb{R}^n$ is closed if X contains all its limit points, i. e., if $(x_k)_{k \in \mathbb{N}}$ is a sequence of elements in X and $\lim_{k \to \infty} x_k = x$, then also $x \in X$.

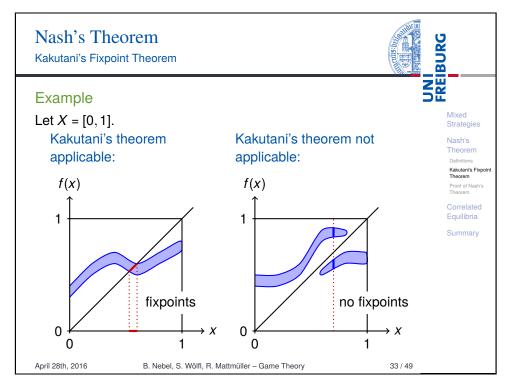


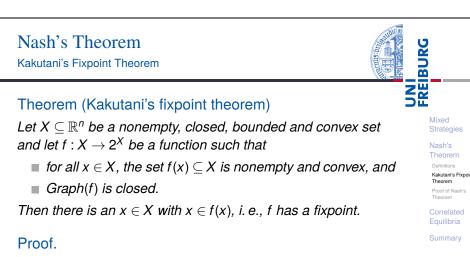
Nash's Theorem

Definitions









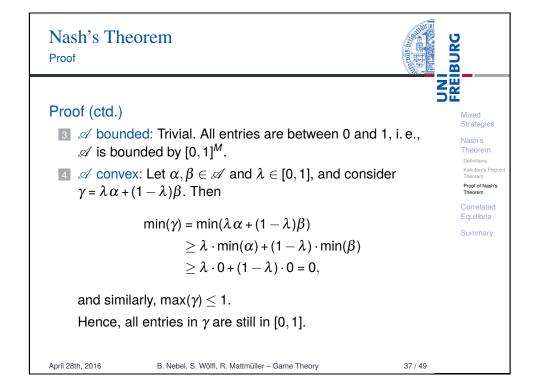
See Shizuo Kakutani, A generalization of Brouwer's fixed point theorem, 1941, or your favorite advanced calculus textbook, or the Internet.

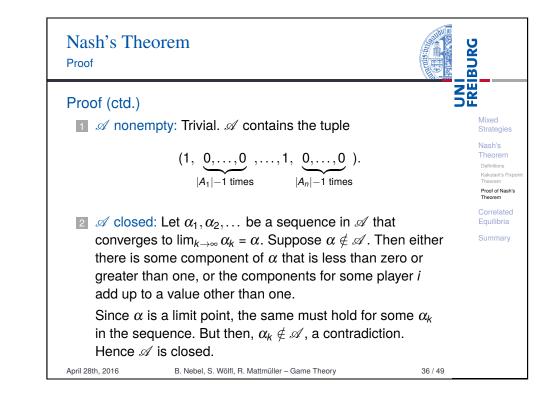
For German speakers: Harro Heuser, Lehrbuch der Analysis, Teil 2, also has a proof (Abschnitt 232).

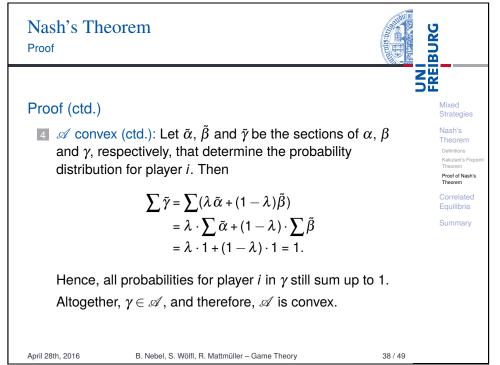
Nash's Theorem UNI FREIBURG Proof Proof. Mixed Apply Kakutani's fixpoint theorem using $X = \mathscr{A} = \prod_{i \in \mathbb{N}} \Delta(A_i)$ Nash's and f = B, where $B(\alpha) = \prod_{i \in N} B_i(\alpha_{-i})$. Theorem Definitions We have to show: Kakutani's Fix Theorem Proof of Nash's Theorem $\blacksquare \mathscr{A}$ is nonempty, $2 \mathscr{A}$ is closed, $\exists \mathscr{A} \text{ is bounded},$ 4 \mathscr{A} is convex. **5** $B(\alpha)$ is nonempty for all $\alpha \in \mathcal{A}$, **6** $B(\alpha)$ is convex for all $\alpha \in \mathcal{A}$, and 7 Graph(B) is closed. April 28th, 2016 B. Nebel, S. Wölfl, R. Mattmüller - Game Theory 34 / 49

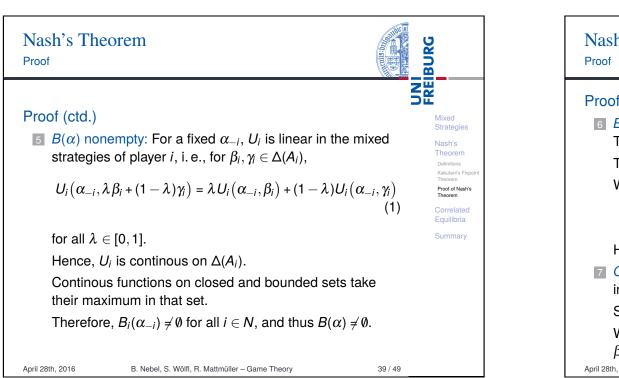
Proof (ctd.)	LUN
Some notation:	Mixed Strategies
Assume without loss of generality that $N = \{1,, n\}$.	Nash's Theorem
A profile of mixed strategies can be written as a vector of $M = \sum_{i \in N} A_i $ real numbers in the interval [0, 1] such that numbers for the same player add up to 1. For example, $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_1(T) = 0.7$, $\alpha_1(M) = 0.0$, $\alpha_1(B) = 0.3$, $\alpha_2(L) = 0.4$, $\alpha_2(R) = 0.6$ can be seen as the vector $(\underbrace{0.7, 0.0, 0.3}_{\alpha_1}, \underbrace{0.4, 0.6}_{\alpha_2})$	Definitions Kakutani's Fxpoint Theorem Proof of Naah's Theorem Correlated Equilibria Summary
■ This allows us to interpret the set A of mixed strategy profiles as a subset of ℝ ^M .	
April 28th, 2016 B. Nebel, S. Wölfl, R. Mattmüller – Game Theory 35 / 49)

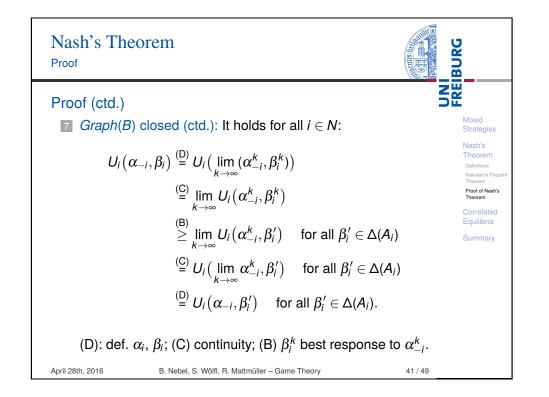
-SIC R



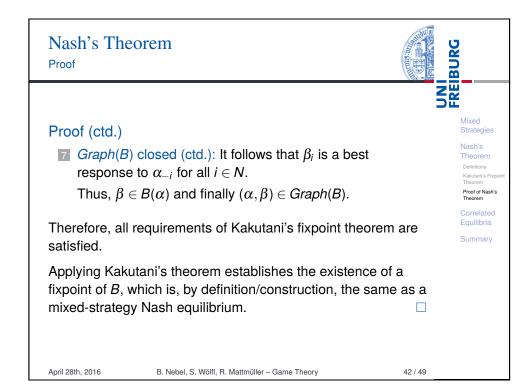


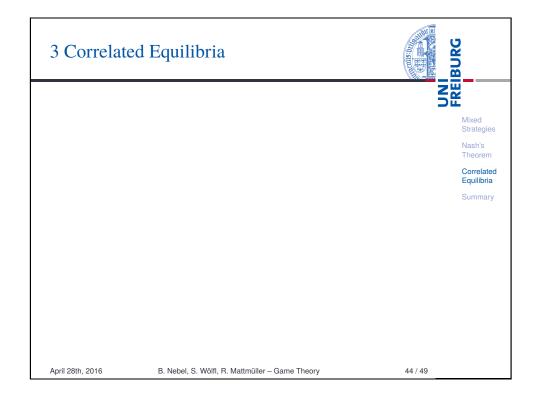


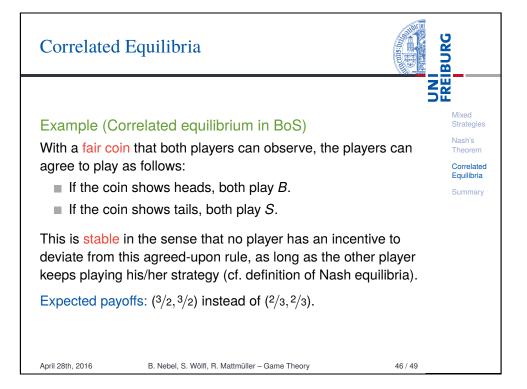


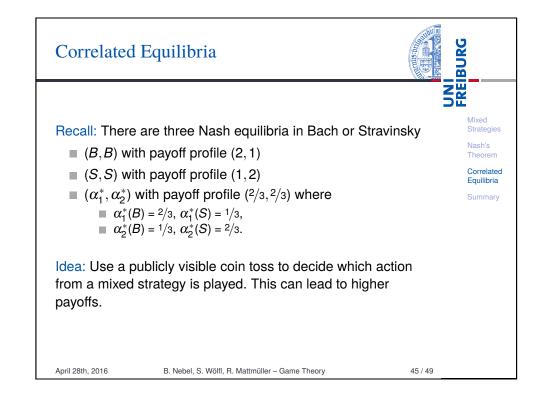


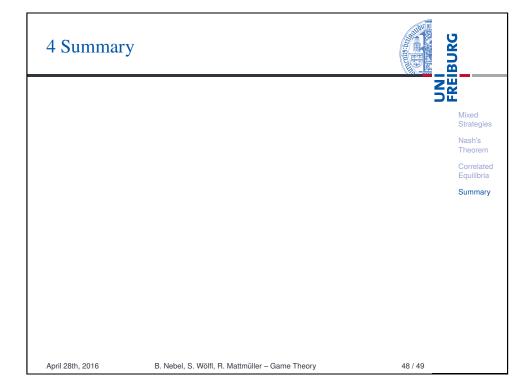
Nash's Theorem Proof	
$A = B(\alpha)$ convoy: This follows since each $B(\alpha, \beta)$ is convey	ixed rategies
Then $U_i(\alpha_{-i}, \alpha'_i) = U_i(\alpha_{-i}, \alpha''_i)$. With Equation (1), this implies	ash's neorem efinitions akutani's Fixp neorem roof of Nash's neorem
$\lambda lpha_i' + (1-\lambda) lpha_i'' \in B_i(lpha_{-i}).$ Eq	orrelated quilibria
Hence, $B_i(\alpha_{-i})$ is convex. Graph (B) closed: Let (α^k, β^k) be a convergent sequence in <i>Graph</i> (B) with $\lim_{k\to\infty} (\alpha^k, \beta^k) = (\alpha, \beta)$. So, $\alpha^k, \beta^k, \alpha, \beta \in \prod_{i \in N} \Delta(A_i)$ and $\beta^k \in B(\alpha^k)$. We need to show that $(\alpha, \beta) \in Graph(B)$, i. e., that $\beta \in B(\alpha)$. April 28th, 2016 B. Nebel, S. Wölfl, R. Mattmüller - Game Theory 40/49	ummary











Summary			EBURG
			Mixed Strategies
Mixed strateg	i <mark>es</mark> allow randomization.		Nash's Theorem
Characterizat	tion of mixed-strategy Nash equilib	oria:	Correlated Equilibria
players only p (support lemr	play best responses with positive p ma).	orobability	Summary
	em: Every finite strategic game ha y Nash equilibrium.	is a	
Correlated ed	uilibria can lead to higher payoffs.		
April 28th, 2016	B. Nebel, S. Wölfl, R. Mattmüller – Game Theory	49 / 49	