Introduction to Modal Logic

B. Nebel, S. Wölfl

Summer 2015

University of Freiburg
Department of Computer Science

Exercise Sheet 11

Due: 15-07-2015

The aim of this sheet is to implement a tableaux solver for the modal logic K. You may worked, and hand in, your solutions in groups of at most three students! In that case please indicate all names in your solution. This week the solution must be handed in on Wednesday before the lecture by email to wenzelmf@tf.uni-freiburg.de.

You may use one of the programming languages Python 3, Java, C++. On the website of the lecture you will find a working Python 3 implementation of a parser and the internal representation of formulae (see (a) and (d)). You may use this code, but you don't need to.

Exercise $11.1(1+1+2+1+5$ points $)$
(a) Implement an internal representation of $\mathscr{L}_{\square}(P)$-formulae of the form

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \varphi \rightarrow \varphi|\varphi \leftrightarrow \varphi| \square \varphi \mid \diamond \varphi .
$$

(b) Implement a procedure that eliminates from a given $\mathscr{L}_{\square}(P)$-formula all occurrences of \rightarrow and \leftrightarrow, by replacing formulae of the form $(\varphi \rightarrow \psi)$ by $(\neg \varphi \vee \psi)$ and $(\varphi \leftrightarrow \psi)$ by $((\neg \varphi \vee \psi) \wedge(\varphi \vee \neg \psi))$, respectively.
(c) Implement a procedure that transforms a given formula into negation normal form (NNF). You may assume that the input formula does not have any occurrences of \rightarrow and \leftrightarrow.
(d) Write a parser that reads formualae and transforms them into the internal representation (implemented in (a)). The formulae are input as strings with the following notation:

$S \longrightarrow \mathrm{p} 1\|\mathrm{p} 2\| \mathrm{p} 3 \mid \ldots$	for propositional variables
$S \longrightarrow \mid S S$	for disjunctions
$S \longrightarrow \& S S$	for conjunctions
$S \longrightarrow-->S S$	for implications
$S \longrightarrow<->S S$	for equivalences
$S \longrightarrow!S$	for negations
$S \longrightarrow[] S \mid<>S$	for boxes and diamonds.

(e) Implement the tableaux method for deciding the \mathbf{K}-validity of an input formula.

Input:
Your program should be called from the command line by :

```
# tableau <formula>
```

as in the following example (which checks the validity of axiom \mathbf{K}):
\# tableau "--> [] --> p1 p2 --> [] p1 [] p2"

Output:

The last line of the output of your program should be "TRUE", when the input formula is K-valid, and "FALSE" otherwise.

